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Abstract—We explore a novel algorithm to analyze arbitrary
distributions of 3D-points. Using a direct tensor field visualiza-
tion technique allows to easily identify regions of linear, planar
or isotropic structure. This approach is very suitable for visual
data mining and exemplified upon geoscience applications.
It allows to distinguish, for example, power lines and flat
terrains in LIDAR scans. We furthermore present the work
on the optimization of the computationally intensive algorithm
using OpenCL and potentially utilizing the Insieme optimizing
compiler framework.

Keywords-metric tensor; scientific visualization; point cloud;
OpenCL.

I. INTRODUCTION

Point clouds occur as primary data sources in different
scientific domains, e.g., stemming from simulations in com-
putational fluid dynamics by smooth particle simulations
or from observational methods, such as light detection and
ranging (LIDAR) laser scanning [1]. Classification of point
clouds is still ongoing research for LIDAR laser scan data
[2]. Geometric information about the local point distribution
can be used for classification, for constructing surfaces, or
as basis for other algorithms. An algorithm to compute
Gaussian and mean curvature on polygon meshes was pre-
sented in [3], based on the tensorial product of the polygon’s
normal vectors. A product with additional weights was used
to compute the co-variance matrix of point neighborhoods
describing tangential frames for surfaces in [4]. This co-
variance matrix provides us with a type of smooth transition
between lines, surfaces, and volumes [5].

In this article, we utilize the direct tensor visualization
technique [6] to illustrate the co-variance matrix result-
ing from arbitrary point clouds. Section II introduces the

distribution tensor and the utilized visualization technique,
presented on simple geometric point distributions. Two
algorithms for the tensor computation are described: One
for central processing units (CPUs) and one for graphics
processing units (GPUs). Optimizations are presented and
the Insieme compiler optimization framework [7] is intro-
duced. Our visualization method is demonstrated on two
geo-scientific applications in Section III: On the analysis of
LIDAR laser scan data and the analysis of coastlines. The
paper concludes and describes future work in Section IV.

II. COMPUTING THE POINT DISTRIBUTION TENSOR

A. Mathematical Background

We define the “point distribution tensor” as a measure
constructed from of a set of N points {Pi : i = 1...N}
similar to the co-variance matrices in [4] [8] [5]:

S(Pi) =
1

N

N∑
k=1

ωik(tik ⊗ tτik) (1)

whereby tik = Pi − Pk and an optional weighting function
ωik := f(||Pi − Pk||, r, i). Here, r is an user specified
distance or radius defining the neighboorhood of point Pi.
The weighting function ωik is zero outside this radius. The
distribution tensor is symmetric and positive definite such
as the metric tensor [9] and, thus, yields three eigen-values
when doing an eigen-analysis: λ3 ≥ λ2 ≥ λ1. These are
used to classify the tensor via three shape factors [10],
characterizing the shape of a fitting ellipsoid of the point



neighborhood in barycentric coordinates, see Figure 1:

clinear = (λ3 − λ2) /(λ1 + λ2 + λ3)
cplanar = 2(λ2 − λ1) /(λ1 + λ2 + λ3)

cspherical = 3λ1 /(λ1 + λ2 + λ3)
(2)

with clinear + cplanar + cspherical = 1. A tensor field
visualization method more suitable for large data than
drawing tensor ellipsoids is utilized. Instead of ellipsoids
textured splats are rendered with smooth transitions in color,
orientation, texture and transparency, as shown in Figure 1.

Figure 1. Tensors are visualized as textured oriented disks. The three
shape factors, Equation 2, are used for smooth transitions between linear
(right), planar (left), and spherical (top) shape [9]. In this context, the disks
enhance the visualization of points predominantly distributed on a line, on
a surface, or in a volumetric distribution.

B. Test Cases

Simple analytic test cases were used to verify and study the
properties of the distribution tensor, as illustrated in Figure
2. The point distributions have an extent of 1.0 in spatial
dimensions and have been computed using a neighborhood
radius of r = 0.2. Figure 2 (a) shows linear tensor splats
textured and oriented in one direction. At the corners of
the rectangle tensors become planar caused by two equally
dominant directions in the neighborhood. Homogeneous
distributions are fully transparent and become invisible, as
demonstrated in Figure 2 (c). Here, the inner region is
transparent, the border surfaces become more planar and are
colored red while corner points become linear (green).

C. Algorithm

A first serial algorithm was implemented in the visualization
shell VISH [11] utilizing C++ and OpenGL. Computation
and visualization tasks were split in different modules. The
computation module searches for neighbors in a 3D KD-
Tree [12] within a user specified radius (where ωik > 0.0)
to limit the number of considered points. Alternatively to
setting the radius, also the number of neighbors can be
specified. Furthermore, a scalar field given on the points
can be utilized to set the radius or number of points
for each point individually. Eqn. 1 is utilized to compute
the distribution tensor for each point. Different weighting

(a) Rectangular Distribution

(b) Planar Distribution

(c) Volumetric Distribution

Figure 2. Left: Analytic point distributions illustrated by simple point
rendering. Right: Corresponding distribution tensor fields. Linear 1D, planar
2D and isotropic 3D tensors are visualized using tensor splats, having a
dominant linear, planar and spherical shape factor, respectively.

functions have been implemented inside the neighborhood:
ωik := (r − ||Pi − Pk||)/r, ωik := 1/r and ωik := 1/r2.

Data is represented in an unified data model [9] [13]
which allows support of different types of grid geometries
and topologies. The computation algorithm operates on the
vertices of any grid type. In the following applications point
clouds and sets of lines are used for analysis.

D. GPU implementation

An alternative implementation of the algorithm was done
in OpenCL [14], a framework for multicores and parallel
hardware being able to execute programs also across het-
erogeneous platforms. The neighborhood is controlled by a
fixed radius. Instead of the KD-Tree, an uniform grid was
preferred as data structure to speed-up the neighborhood
search. Here, the loose grid approach was adapted, where
each particle is assigned to one cell based on its position.
The grid’s cell size depends on the influence radius (i.e.,
radius≥cell size). Therefore, each particle can affect the
closest 27 cells while calculating the tensor. This method
allowed to bin the particles into the cells and to sort them
by their grid index. The algorithm comprises four steps:

1) for each particle a hash value is computed, i.e., the
cell index where it is located;

2) particles are sorted by hash; for this step NVidia’s
optimized bitonic sorting [15] is utilized;



3) the sorted list is used to compute the starting cell
where the particle is located, running a thread for each
particle, and performing scattered memory writes;

4) tensor calculation: Each particle searches the closest
27 grid cells from its location and it computes the
tensor with each of the particles in these cells.

Steps 1− 3 are related to the build process of the grid data
structure. The sorting algorithm is highly effective because
it improves the memory access coherency when calculating
the tensor, and reduces thread divergence (particles in the
same thread group tend to be close together in space).

E. Optimization

The CPU algorithm was parallelized using OpenMP [16],
adding a minimal overhead in development. Furthermore,
OpenMP, as also OpenCL is supported by Insieme [7].

The Insieme compiler, under development at the Uni-
versity of Innsbruck, is a source-to-source compiler for
C/C++ aiming at the automatic optimization of parallel
programs implemented with MPI, OpenMP or OpenCL.
It optimizes the source code for a specific platform (e.g.,
NVidia Fermi architecture), and applies transformations such
as loop enrolling and collapsing, thread merge and data
pre-fetching. Insieme aims at supporting programmers in
effectively optimizing programs across different architec-
tures, including shifting of computations from CPU to GPU
cores. Optimizations are performed at compile-time through
code analysis and transformations for sequential and parallel
code regions. An intermediate representation is facilitated
which explicitly describes parallelism, synchronization, and
communication. The program’s behavior is optimized and
customized to the available hardware resources at runtime
by utilizing statistical machine learning techniques based on
a performance analysis database. Performance measures are,
e.g., execution time, energy consumptions, and computing
costs. Preliminary tests will be done with this code which
is now part of the Insieme test cases.

III. APPLICATION RESULTS

The method was applied to two different geoscience ap-
plications. Figure 3 shows a scan of a water basin close
to the Danube in Austria captured with the Riegl hydro-
graphic laser scanner VQ-820G [17]. In the example, a
fixed neighborhood radius of two meters and a constant
weighting function ωik = 1 showed good results. Other
parameters for r and ωik have been tested as well. Figure
3 (a) illustrates the received and processed laser echoes as
a cloud of points; (b) and (c) show the distribution tensor
field. Linear structures, such as the power cables, are well
identified (green). The ground is dominantly planar (red).
Some regions of the ground fade to magenta indicating
less planarity. Here, grass influences the planar tensor to
become more isotropic. Bushes and trees are isotropic or
of an interpolated intermediate shape, mostly appearing

(a) LIDAR Echos

(b) LIDAR Tensors r = 2.0m

(c) LIDAR Tensors r = 2.0m Detail

Figure 3. Distribution tensor field of returned laser echoes from an airborne
laser scan. Linear distributions such as cables and planar distributions such
as ground are emphasized. Vegetation is fading to spherical.

Figure 4. Distribution tensor field of an ESRI shapefile of the earth’s water
bodies and coastlines. The distribution tensor field with 12 fixed neighbors
of the northern part of the United Kingdom is illustrated.



yellow. The computation with the OpenMP version utilizing
4 threads of the 4.81mio points with approximately 600
neighbors per point (r = 2.0m) took 752 seconds on a
i7 M640 2.8GHz with 7.7GB RAM and NVidia Quadro
FX3800M using Linux64bit, gcc 4.4.5, and Vish SVN 3854.

Another application was the analysis of coast and contour
lines. Shapefiles [18] of water bodies and coastlines were
investigated. Figure 4 (b) shows the distribution tensor field
of the coast of the United Kingdom. Unstructured coastlines
are highlighted in green whereas cliffy coast lines are shown
in red, for example when looking at the northern coast of
Scotland. Here, a rather small neighborhood of fixed 12
points turned out to emphasize cliffy coasts.

IV. CONCLUSION AND FUTURE WORK

A new method of enhancing the visualization of point distri-
butions was introduced, described, and demonstrated. Two
different implementations and parallelization approaches
were presented. Using an unified data model opened the
possibility to apply the technique to data sets stemming from
two different scientific applications: The visual extraction of
power cables in LIDAR data and the visual enhancement of
cliffy coastlines. We will further use the tensor analysis on
LIDAR data to enhance point classification and the creation
of digital terrain models. Different weighting functions and
parameter studies will be investigated on more datasets. We
ultimately will use the Insieme framework to optimize our
parallel GPU and OpenMP codes.
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