
A Performance Analysis of Vector Length Agnostic
Code

Angela Pohl, Mirko Greese, Biagio Cosenza and Ben Juurlink
Embedded Systems Architecture

Technische Universität Berlin
Berlin, Germany

{angela.pohl, cosenza}@tu-berlin.de, mirko.greese@campus.tu-berlin.de

Abstract—Vector extensions are a popular mean to exploit
data parallelism in applications. Over recent years, the most
commonly used extensions have been growing in vector length
and amount of vector instructions. However, code portability
remains a problem when speaking about a compute continuum.
Hence, vector length agnostic (VLA) architectures have been
proposed for the future generations of ARM and RISC-V proces-
sors. With these architectures, code is vectorized independently
of the vector length of the target hardware platform. It is
therefore possible to tune software to a generic vector length.
To understand the performance impact of VLA code compared
to vector length specific code, we analyze the current capabilities
of code generation for ARM’s SVE architecture. Our experiments
show that VLA code reaches about 90% of the performance of
vector length specific code, i.e. a 10% overhead is inferred due
to global predication of instructions. Furthermore, we show that
code performance is not increasing proportionally with increasing
vector lengths due to the higher memory demands.

keywords—vectorization, SIMD, vector length agnostic, SVE

I. INTRODUCTION

Exploiting data level parallelism by code vectorization is
a common technique to speed up applications. Consequently,
general purpose CPUs and server processors come equipped
with Single Instruction Multiple Data (SIMD) Instruction Set
Architectures (ISAs). While the trend over the past decade has
been to keep increasing the vector length, i.e. the number of
bits in a vector register, and adding new vector instructions,
recent vector ISAs go down a different path: they revisit
techniques such as loop predication to enable vector length
agnostic (VLA) code generation. Albeit not being a new
technique either [1], it solves the problem of code portability
across hardware platforms and ISA generations. Using VLA
programming, it is possible to run the same code on an
embedded processor with a small vector length, as well as an
HPC processor with large vector registers without re-coding
or even re-compilation.

The most recently proposed VLA ISAs are ARM’s Scalable
Vector Extensions (SVE) [2] and RISC-V’s V-Module [3].
Both architectures offer instructions whose vector length is not
fixed and can be determined at execution time, thus enabling
the generation of vector-length agnostic code by the compiler.
RISC-V’s V-Module furthermore allows the configuration of
a specific vector length that will be most beneficial for a
kernel. This vector length can be modified for different kernels

within an application. Both ISAs provide different solutions
for avoiding scalar loop tails when vectorizing code. RISC-
V solves the problem by using smaller vector instructions
for loop tails that would otherwise not utilize a full vector.
ARM’s SVE relies on loop predication, i.e. masking out
vector elements and supporting partial vector execution. Gobal
predication of instructions, however, causes an overhead that
impacts performance. We therefore set out to understand the
performance impact of vector length agnostic code compared
with vector length specific code.

Although both ISAs have been proposed a few years ago, no
hardware implementation is available on the market yet. While
the specifications for the V-Module are still work in progress,
Fujitsu has announced a first product that will support SVE.
The Post-K processor [4] will support the SVE instruction
set with a vector length of up to 512 bit. To get developers
started, ARM provides tools to simulate the SVE ISA. Using
this infrastructure, we

• benchmarked 151 auto-vectorized loop patterns in a full-
system simulator

• compare the performance of VLA code run on a 128 bit
architecture with state-of-the-art NEON code

• assess the overhead induced with global predication of
instructions in SVE

• analyze the scaling of speedups with scaling vector
lengths.

Our results show that, while SVE is competitive with NEON
on average, the overhead added by predication is around
10%. We furthermore found that, despite the ability to scale
vector lengths to large values, the added stress on the memory
subsystem diminishes the return on investment.

II. RELATED WORK

Although no product is available on the market, first appli-
cation and performance evaluation papers have been published
about SVE. Rico et al. [5] present an overview of the available
HPC ecosystem for ARM processors and briefly introduce the
scalable vector extensions. They present a simulation-based
study of vectorization rates and speedups for a variety of
benchmark kernels from HPC applications. Findings include
that a significant speedup could be achieved for about a third



of the kernels, while a higher vectorization rate does not
necessarily translate into a performance gain.

Kodama et al. [6] analyzed the impact of vector scaling
on code performance. In their experiment, they increased the
hardware’s vector length while keeping all other hardware
resources constant. They are able to show that compute-bound
applications do benefit from larger vectors as long as sufficient
hardware registers are available.

Meyer et al. [7] ported a framework for Lattice Quantum
Chromodynamic Codes to SVE and evaluated the existing
toolchain for their HPC problem. They were able to implement
and prove correctness of their code using the ARM instruction
emulator, but were not able to give a performance assessment
due to a lacking HPC simulation environment.

Armejach et al. [8] implemented stencil codes using SVE
assembly. They thoroughly discuss strategies for further per-
formance improvements and present example codes that did
not benefit from large vector lengths due to the increased
number of memory accesses.

However, none of the aforementioned works analyze the
impact of VLA code on performance. We therefore present
results of two further experiments: comparing performance of
128 bit NEON code with 128 bit SVE VLA code, as well as
comparing performance of SVE VLA code with SVE vector
length specific code for large vector lengths.

III. ARM SCALABLE VECTOR EXTENSIONS

A thorough discussion of all features can be found in
ARM’s inaugural SVE paper [2]. A few of the most significant
extensions compared to ARM’s current NEON ISA are [5]:

• Vector length scalability, which enables code to adapt
dynamically to a hardware’s vector length by supporting
vector length agnostic instructions

• Enhanced addressing modes that support gather-load and
scatter-store vector operations

• Per-lane predication, with predicated instructions elimi-
nating the need for scalar loop tails and enabling partially
executed loop iterations

• Extended horizontal operations, which include floating-
point, integer and bitwise logical reductions

• Vector partitioning to allow speculative vector loads and
vectorization of data-dependent loops

When looking at SVE assembly, it can be seen that the
concept of VLA code is implemented by predicating all vector
instructions. An example is shown in Listing 4, where all
instructions are invoked with an additional predicate register p.
Furthermore, loop increments are not done with a fixed number
that denotes the vector length. Instead, the loop variable is
incremented with a constant value, which is indicated by the
incw instruction that only takes a variable as an argument,
but not the vector length.

IV. EXPERIMENTAL SETUP

As no SVE hardware is available on the market yet, we
used the gem5 simulator for our measurements [9]. gem5
is a modular platform for processor and system architecture

simulation. It is actively supported by ARM and a branch to
simulate hardware with SVE is publicly available [10]. Within
this branch, there is a choice of three different CPU models:
atomic, in-order, and out-of-order. Since SVE is targeted for
HPC applications, we chose the out-of-order CPU model,
which resembles an ARM Cortex-A72.

As a benchmark for our experiments, we used the Test
Suite for Vectorizing Compilers [11], [12]. It contains 151
short loops that were originally intended to test the auto-
vectorization capabilities of a compiler. All loops use 32 bit
floating point data types and test different loop patterns, such
as loops with control flow or indirect addressing schemes. For
our experiment, we separated each loop into its own source
file and ran it once to measure the execution time of each code
pattern. Running the simulation once was sufficient due to its
deterministic nature. The execution time was derived from the
absolute number of simulated clock ticks per execution run.

To generate SVE vectorized code, we used GCC 8.2.0. It
supports auto-vectorization for SVE as well as in-line assem-
bly. In our experiments, we relied on GCC’s auto-vectorization
capabilities and used the -msve-vector-bits flag to
switch between VLA and vector length specific code gener-
ation. Possible values for this flag are scalable, 128,
256, 512, 1024, and 2048. Contrary to SVE’s specifi-
cations, it is not yet possible to generate code for all vector
lengths that are multiples of 128 bit, e.g. 384 bit. The default
configuration is scalable, which generates VLA code.
Furthermore, there is a restriction in GCC 8 when specifying
the flag value as 128; it will always generate VLA code.

V. COMPARISON WITH NEON

As a first experiment, we compared two metrics: the overall
number of auto-vectorized loops, i.e. the vectorization rate, and
the speedups achieved by NEON and SVE VLA code. As a
second step, we analyzed the overhead that is introduced by
SVE’s global predication.

A. Vectorization Rates and Speedups

Out of the 151 loop patterns, 66 could be auto-vectorized
for both architectures. GCC is furthermore able to vectorize
16 additional loops for the SVE hardware, i.e. 82 loops in
total. There were no loops that were vectorized for NEON
exclusively. This is depicted in the Venn diagram in Figure 2
below.

SVE NEON

16 66 0

69

Fig. 2. Auto-vectorized TSVC loops



NEON SVE
0

1

2

3

4 3.51 3.45
A

ve
ra

ge
Sp

ee
du

p

Full Set
(66 Loops)

NEON SVE
0

1

2

3

4
2.63 2.63

NEON = SVE
(17 Loops)

NEON SVE
0

1

2

3

4
4.29

3.40

NEON > SVE
(29 Loops)

NEON SVE
0

1

2

3

4 3.36

4.44

NEON < SVE
(20 Loops)

Fig. 1. Speedup comparison of loops vectorized with NEON and vector length agnostic SVE (128 b vector length); average speedup is determined by the
geometric mean of individual loop speedups

The 16 additional loops were auto-vectorized due to the
support of predication and scatter/gather operations in the SVE
ISA, which has been lacking in the NEON ISA so far. For
example, loops with indirect addressing schemes were not
vectorized. There are techniques to implement the missing
scatter/gather instructions for NEON, too, such as assembling
vectors element by element or emulating a predicated store
with existing instructions [13]. However, GCC did not apply
them to the loops in questions.

We measured the benchmark’s average speedup by calculat-
ing the geometric mean of the 66 individual loop speedups that
were vectorized for both ISAs, SVE and NEON. All individual
loop speedups are based on the runtimes of each loop on the
out-of-order processor with a vector width of 128 bit. The
results are depicted in Figure 1.

On average, the speedup achieved by SVE VLA code is 0.06
lower than for NEON. This could be attributed to the overhead
introduced by loop predication, but a deeper analysis shows
that the 66 loops can actually be split into three different sets:

1) NEON = SVE (17 loops): speedups are the same, i.e.
within 5 percentage points of each other.

2) NEON > SVE (29 loops): loop speedup is more than 5
percentage points higher for NEON than for SVE.

3) NEON < SVE (20 loops): loop speedup is more than 5
percentage points lower for NEON than for SVE.

The geometric mean of the first set’s speedups is 2.63x for both
architectures. However, this set also contains three loops that
are vectorized, but fall back to scalar code during execution
due to unresolved dependences at runtime. When removing
these three loops from set 1, the geometric mean of the set’s
speedups increases from 2.63x to 3.23x. For the second set,
the average speedup is 0.81 higher for NEON (SNEON =
4.29, SSV E = 3.40), while it is 0.90 lower for the third set
(SNEON = 3.36, SSV E = 4.44).

When looking at the type of loop patterns that fall into
each set, we see a broad distribution among pattern types
as shown in Table I. There are pattern types where one ISA
achieves higher performance for all auto-vectorized loops of
that category. For NEON, these categories are loops with
control flow, index set splitting, jump in data accesses and
node splitting, i.e. five loops in total. However, the difference

TABLE I
NUMBER OF LOOPS PER PATTERN TYPE IN LOOP SETS 1 (NEON = SVE),

2 (NEON > SVE), AND 3 (NEON < SVE)

Pattern Type Set 1 Set 2 Set 3

reduction 4 5 2
linear dependence testing 2 2 4
symbolics 2 1 1
scalar and array expansion 1 1 1
storage classes and equivalencing 1 4 —
call statements 1 1 —
data flow analysis 1 — 3
loop interchange 4 — —
loop re-rolling 1 — —
misc. control loops — 6 4
induction variable recognition — 4 3
control flow — 2 —
index set splitting — 1 —
jump in data access — 1 —
node splitting — 1 —
parameters — — 1
intrinsic functions — — 1

Sum 17 29 20

in speedups is only 18 percentage points on average (geometric
mean of SNEON − SSV E).

The two loops that are vectorized from the parameters and
intrinsic functions categories perform better on SVE. While
the difference for the loop with intrinsic functions is again
18 percentage points (SNEON = 1.61, SSV E = 1.79), it is
significantly higher for the loop from the parameters category.
Here the speedup increases from 6.06x for NEON to 8.45x for
SVE. The code for this loop, s431, is shown in Listing 1.

Listing 1
LOOP PATTERN S431

int k1 = 1;
int k2 = 2;
int k = 2 * k1 - k2;

for (int i = 0; i < 32000; i++){
array[i] = a[i + k] + b[i];

}
}



Listing 2
LOOP PATTERN S125

int k = -1;

for (int i = 0; i < 256; i++){
for (int j = 0; j < 256; j++){

k++;
res[k] = aa[i][j]

+ bb[i][j] * cc[i][j];
}

}

Listing 3
NEON ASSEMBLY

.L3:
ldr q2, [x4, x0]
ldr q1, [x3, x0]
ldr q0, [x1, x0]
fmla v0.4s, v2.4s, v1.4s
str q0, [x2, x0]
add x0, x0, 16
cmp x0, 1024
bne .L3

Listing 4
SVE ASSEMBLY

.L3:
ldlw z0.s, p0/z, [x3, x0, lsl 2]
ldlw z1.s, p0/z, [x8, x0, lsl 2]
ldlw z2.s, p0/z, [x4, x0, lsl 2]
fmla z0.s, p1/m, z2.s, z1.s
stlw z0.s, p0, [x1, x0, lsl 2]
incw x0
whilelo p0.s, x0, x2
bne .L3

The difference in the generated assembly is the calculation
of the iteration variable i and the test if all loop iterations
have been executed. While the SVE version applies the vector
length agnostic increment to i and subsequently utilizes
its predication registers to decide if loop execution can be
terminated, the NEON version needs one addition and two
subtractions for the same calculation. Due to the short loop
body —it consists of two loads, a floating point addition and a
store—, the performance impact of the additional instructions
is measurable. It must be noted, however, that the compiler
should be able to produce more efficient code for the NEON
platform, consequently reducing the difference in speedups
between platforms.

B. Predication Overhead

To understand the performance impact of SVE’s global
predication of instructions, we analyzed code pattern s125 in
more detail. It belongs to the induction variable recognition
pattern group and its code is presented in Listing 2. The
generated assembly for NEON and SVE is shown in Listings
3 and 4, respectively. For both architectures, an identical
code sequence of three load operations, a fused-multiply-add
instruction and a store is generated. The difference between
the two code snippets is that for SVE, all instructions are
predicated, which can be seen by the additional p registers
being passed as arguments to the instructions. Furthermore,
there is no specific induction variable increment in SVE,
but it is incremented by the hardware specific vector width.
The loop is then executed until the lowest element of the
predicate register is set to false, i.e. all elements have been
processed. In terms of performance, the NEON based version
achieves a speedup of 1.54x, while the SVE based version
speeds up scalar code by a factor of 1.39x, i.e. 90% of
NEON’s performance. The overhead introduced by the general
predication of registers can therefore be assumed to be around
10% when compared to state-of-the-art NEON code.

VI. PERFORMANCE OF VLA CODE

We performed a third experiment to understand the per-
formance impact of VLA code for larger vector lengths and
analyze how well performance scales with increasing vector
lengths. For this purpose, we determined the speedups for
82 loops that could be auto-vectorized by the compiler for

vector length specific and VLA code. We then calculated the
geometric mean of the loops’ individual speedups. Results are
shown in Figure 3.

256 b 512 b 1024 b 2048 b
0

1

2

3

4

5

6

7

4.48

5.33

6.12

6.77

4.10

4.92
5.46

5.95

SVE Vector Length

A
ve

ra
ge

Sp
ee

du
p

vector length specific
vector length agnostic

Fig. 3. Comparison of average speedups of 88 loops for VLA and vector
length specific code built for varying vector lengths

Based on these numbers, two observations can be made:
• The compiler is able to produce higher performing code

when the vector length is known.
• Speedups do not grow proportionally with vector length

for neither vector length specific nor vector length agnos-
tic code.

A. NEON as Fall-Back Solution

The first observation is that VLA code reaches about 90%
of the performance of vector length specific code. When
looking at individual loop speedups, performance is similar
for the majority of codes. There are loops, however, where
the compiler uses NEON code as a fall-back solution, i.e. it
is not utilizing the full vector length. This applies to loops
with instructions that might not be supported on all vector
lengths and/or data types, such as horizontal adds, which add
all elements across a vector. In this case, it is safe to fall
back to 128 bit NEON instructions, since all vector lengths in
SVE are multiples of 128 bit and it can be guaranteed that all



instructions will be supported by any hardware. The measured
results in Figure 3 therefore show the average impact of the
fall-back solution on overall performance when compared with
vector length specific code that uses the full vector length.
This performance impact is significantly higher for the affected
individual loops. Consequently, when code portability is not
an issue, a specific target architecture should be specified.

B. Memory Limitations for Large Vector Lengths

Figure 3 also shows that the average speedup does not
scale with vector length. All loops in this experiment operate
with 32 bit single precision floating point numbers. Therefore,
the highest possible vectorization factor (VF), i.e. the highest
number of vector elements, is given by V F = vector length

32bit . It
also denotes the theoretical maximum speedup for compute-
bound loops. Ideally, when doubling the vector length, the
average speedup would double as well. However, this is not
the case for the 88 SVE loops. For a vector length of 256 bit,
an average speedup of 4.5 is achieved for vector length specific
code (4.1 for VLA) despite an upper bound of eight. When
doubling the vector length, however, the average speedup only
increases by a factor of 1.18x (1.20x for VLA) and the return
diminishes further when continuing to double vector lengths:
when increasing the vector length from 1024 bit to 2048 bit,
code is sped up by a factor of merely 1.10x (1.09 for VLA).
This is due to code hitting memory limitations.

We therefore analyzed the memory limitations for large
vector lengths in terms of L1 cache size. To understand its
impact on code performance, we scaled the L1 cache size
in the gem5 simulator and ran the benchmarks with different
vector lengths. The L2 cache size was kept constant at a large
value (> 100MB) to remove its impact from the experiment.
In general, all benchmark loops operate on one or multiple data
arrays of a constant size. For one dimensional arrays, this size
is 32000 ∗ 4B = 128kB, while it is 256 ∗ 256 ∗ 4B = 256kB
for two dimensional arrays. Hence a cache size of 1 MB
would fit all array data into the cache for the majority of
loops. The baseline of this experiment, however, is code
performance for a L1 cache size of 32 kB, which is a common
size in today’s processors, even in the high performance
computing market. We then quadrupled the cache size up to
a size of 8 MB, keeping the cache line size constant, and
ran the experiment for three different vector lengths. Average
speedups are determined based on the each vector length’s
performance with a L1 cache size of 32 kB. The results are
shown in Figure 4.

The experiment shows that increasing the cache size by
a factor of four from 32 kB to 128 kB yields only limited
speedups of 6 - 14 percentage points. For the smaller vector
length of 128 b, scaling the cache size further improves
performance up to a factor of 1.91x (8 MB cache size).
The larger vector lengths benefit significantly more from the
larger cache sizes, with maximum speedups of 2.69x (512 b
vector, 8 MB cache size) and 5.65x (2048 b, 8 MB cache
size). However, the return diminishes substantially. While
performance improves greatly when moving from 128 kB to

128 kB 512 kB 2 MB 8 Mb
0

1

2

3

4

5

6

1.06
1.30

1.85 1.91

1.08

2.13

2.59 2.69

1.14

3.68

5.32

5.65

L1 Cache Size

A
ve

ra
ge

Sp
ee

du
p

128 b
512 b

2048 b

Fig. 4. L1 cache size scaling showing the average speedup compared to
baseline cache size of 32 kB for increasing vector lengths

512 kB to 2 MB, increasing the cache size to 8 MB increases
the speedups by a mere 4% on average.

Overall, the experiment highlights the increased pressure
that is added to the memory subsystem by the growing vector
lengths. With large cache sizes, we see speedups up to a
factor of 5.65x for large vectors, while performance increases
by a factor of 1.91x for small vectors. It indicates that
applications will be even more memory bound as of today,
since higher speedups are possible with a more performant
memory subsystem. To achieve these high speedups, however,
an increase in L1 cache size of at least a factor of eight is
needed for this benchmark. The use of large vectors therefore
opens new challenges for memory design, and more research
is required in this direction to utilize large vectors to their full
potential.

VII. CONCLUSION

After several years of ever-increasing vector lengths and
vector instruction sets, new ISAs are introduced for vector
length agnostic programming and code generation. Based on
the known technique of loop predication, the proposed ISAs
allow optimizations for a hardware- independent instruction
set, which is portable across platforms with varying vector
widths. In this work, we analyzed the performance impact
of VLA code compared to vector length specific code. For
this purpose, we ran a loop benchmark in a gem5 SVE
simulation environment and measured the obtained speedups.
Our results show that the current processor model assumes a
10% overhead that is added by loop predication.

For large vector lengths, we found that the compiler is not
able to utilize the full vector length for all code patterns,
falling back to NEON instructions and thus missing perfor-
mance improvements. Our experiment furthermore highlights
the stress that is put on the memory subsystem by growing
vector lengths. It will therefore become critical to understand



and satisfy memory requirements that such large vector lengths
impose on the overall system, as it will not be possible to
capitalize on large vector lengths otherwise.

REFERENCES

[1] B. Juurlink, D. Tcheressiz, S. Vassiliadis, and H. A. Wijshoff, “Imple-
mentation and Evaluation of the Complex Streamed Instruction Set,”
in Proceedings 2001 International Conference on Parallel Architectures
and Compilation Techniques, pp. 73–82, IEEE, 2001.

[2] N. Stephens, S. Biles, M. Boettcher, J. Eapen, M. Eyole, G. Gabrielli,
M. Horsnell, G. Magklis, A. Martinez, N. Premillieu, et al., “The ARM
Scalable Vector Extension,” IEEE Micro, vol. 37, no. 2, pp. 26–39, 2017.

[3] “RISC-V Vector Extension Proposal.” https://riscv.org/wp-content/
uploads/2015/06/riscv-vector-workshop-june2015.pdf. Accessed: 2019-
04-05.

[4] T. Yoshida, “Fujitsu high performance CPU for the Post-K Computer,”
in Hot Chips 30 Symposium (HCS), Series Hot Chips, vol. 18, 2018.

[5] A. Rico, J. A. Joao, C. Adeniyi-Jones, and E. Van Hensbergen, “ARM
HPC Ecosystem and the Reemergence of Vectors,” in Proceedings of
the Computing Frontiers Conference, pp. 329–334, ACM, 2017.

[6] Y. Kodama, T. Odajima, M. Matsuda, M. Tsuji, J. Lee, and M. Sato,
“Preliminary Performance Evaluation of Application Kernels Using
ARM SVE with Multiple Vector Lengths,” in 2017 IEEE International
Conference on Cluster Computing (CLUSTER), pp. 677–684, IEEE,
2017.

[7] N. Meyer, P. Georg, D. Pleiter, S. Solbrig, and T. Wettig, “SVE-Enabling
Lattice QCD Codes,” in 2018 IEEE International Conference on Cluster
Computing (CLUSTER), pp. 623–628, IEEE, 2018.

[8] A. Armejach Sanosa, H. Caminal Pallarés, J. M. Cebrián González,
R. González-Alberquilla, C. Adeniyi-Jones, M. Valero Cortés, M. Casas,
and M. Moreto Planas, “Stencil codes on a vector length agnostic
architecture,” in Proceedings of the 27th International Conference on
Parallel Architectures and Compilation Techniques: Limassol, Cyprus,
November 01-04, 2018, pp. 1–12, Association for Computing Machinery
(ACM), 2018.

[9] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, et al., “The gem5
Simulator,” ACM SIGARCH Computer Architecture News, vol. 39, no. 2,
pp. 1–7, 2011.

[10] “gem5 SVE Branch.” https://gem5.googlesource.com/arm/gem5/+/sve/
beta1. Accessed: 2019-04-05.

[11] S. Maleki, Y. Gao, M. J. Garzarán, T. Wong, and D. A. Padua, “An
Evaluation of Vectorizing Compilers,” in Proceedings of the 2011
International Conference on Parallel Architectures and Compilation
Techniques, PACT ’11, pp. 372–382, IEEE Computer Society, 2011.

[12] “TSVC Benchmark Sources.” http://polaris.cs.uiuc.edu/∼maleki1/
TSVC.tar.gz. Accessed: 2019-05-06.

[13] A. Pohl, B. Cosenza, and B. Juurlink, “Control Flow Vectorization for
ARM NEON,” in Proceedings of the 21st International Workshop on
Software and Compilers for Embedded Systems, pp. 66–75, ACM, 2018.


