
ALONA: Automatic Loop Nest Approximation
with Reconstruction and Space Pruning

Daniel Maier1, Biagio Cosenza2, and Ben Juurlink1

1 Technische Universität Berlin, Germany
2 University of Salerno, Italy

Abstract. Approximate computing comprises a large variety
of techniques that trade the accuracy of an application’s out-
put for other metrics such as computing time or energy cost.
Many existing approximation techniques focus on loops such
as loop perforation, which skips iterations for faster, approx-
imated computation. This paper introduces ALONA, a novel
approach for automatic loop nest approximation based on poly-
hedral compilation. ALONA’s compilation framework applies
a sequence of loop approximation transformations, general-
izes state-of-the-art perforation techniques, and introduces new
multi-dimensional approximation schemes. The framework in-
cludes a reconstruction technique that significantly improves
the accuracy of the approximations and a transformation space
pruning method based on Barvinok’s counting that removes
inaccurate approximations. Evaluated on a collection of more
than twenty applications from PolyBench/C, ALONA discov-
ers new approximations that are better than state-of-the-art
techniques in both approximation accuracy and performance.

1 Introduction

Many real-world applications can trade the accuracy of an application’s result
for other metrics, typically performance or energy. Approximate computing is an
emerging paradigm that explicitly exploits this gap. Prior work investigates both
hardware and software techniques [23]. Software techniques include soft slices [31]
and mixed-precision tuning [8]. A popular approach is to attack the problem
at loop level. Loop perforation [33] is a general-purpose technique that lowers
the accuracy of loops by skipping loop iterations. Similarly, loop perforation
can also be applied to data-parallel kernels executed on GPUs. Paraprox [30]
is a framework for the approximation of data-parallel programs that operates
on commodity hardware systems. More recently, these perforation techniques
have been augmented with a reconstruction phase that improves the accuracy
of perforated kernels [21].

While loops are generally an important target for both approximation and
optimization techniques, e.g., loop-level parallelization, existing loop-level ap-
proximation techniques focus on one loop and a specific dimension instead of
taking the whole iteration domain of all loop nests into consideration.

Polyhedral compilation has been proven to be an effective way to reason
about loops. Polyhedral techniques can potentially target any affine loop nest,
and perform a variety of tasks such as the efficient application of code transfor-
mations [27, 4], the accurate modeling of performance and other metrics [15, 1],
and automatic parallelization [5, 3].

We explore how the polyhedral model can be effectively used for the im-
plementation of automatic approximation techniques targeting loop nests. In
particular, we use it to efficiently handle a sequence of code transformations,
which in our case includes loop perforation, and to filter the large set of possible
approximations using a metric based on Barvinok’s counting of the number of
the exact and approximate loop iterations [2]. Furthermore, we provide a signal
reconstruction step implemented as a post-processing technique that improves
the accuracy by reconstructing missing values in the final result and provides an
interface for application-specific reconstruction.

Our approach is fully compatible with existing polyhedral techniques that
focus on automatic parallelization, and, in fact, extends existing state-of-the-
art perforation frameworks such as Paraprox [30] and Sculptor [20] in terms of
supported approximation schemes, and improves them in terms of accuracy and
performance.
The contributions of this work are:

1. We introduce ALONA, the first compiler approach for automatic approxi-
mation of affine loop nests based on polyhedral techniques. ALONA gener-
alizes existing state-of-the-art perforation techniques and can model multi-
dimensional approximation schemes (Section 3.2, evaluated in Section 6.2).

2. ALONA’s accuracy is significantly improved by supporting signal reconstruc-
tion techniques that mitigate the error by reconstructing missing values in
the output (Section 4, evaluated in Section 6.3).

3. To efficiently handle the large transformation space, ALONA proposes an
approximation space pruning technique based on Barvinok’s counting of loop
iterations (Section 5, evaluated in Section 6.4).

4. We experimentally evaluate the proposed polyhedral perforation framework
on a collection of more than twenty benchmarks from PolyBench and Para-
prox (Section 6). Results show that ALONA discovers new approximations
and outperforms state-of-the-art methods.

2 Related Work

Approximate computing is an emerging paradigm where accuracy is traded for
a gain in performance or a reduction in energy consumption. This trade-off is
feasible because there is often a gap between the accuracy provided by a system
and the accuracy required by an application. Research in approximate computing
exploits this gap using a variety of approaches, ranging from hardware-supported
techniques such as Truffle [11], CADE [16] and Replica [12], to pure software
methods, including compilers and APIs, which we review in this section.

2

The Approxilyzer framework [35] quantifies the significance of instructions in
programs when considering the output accuracy; given a program and an end-to-
end quality metric, it selects a set of instructions as candidates for approximation
by introducing bit errors. TAFFO [8] is a dynamic assistant for floating to fixed
point conversion. A general-purpose software technique, extended and refined
in many recent works [19–21], is loop perforation [33]. Loops are the bottleneck
in many applications. Loop perforation skips loop iterations (or part of loop
iterations) in order to reduce the compute load and to gain performance. Para-
prox [30] is a framework for the approximation of data-parallel programs. It uses
approximation techniques specifically tailored to specific data-parallel patterns.
For instance, stencil patterns are approximated using center, row, and column
value approximation. Maier et al. [21] extend these patterns with an additional
reconstruction phase that exploits GPU’s local memory for better approxima-
tion accuracy. Sculptor [20] moves the scope of perforation from loop iterations
to individual statements and explores dynamic perforation, e.g., a perforation
pattern that changes during the runtime of a program. Different phases dur-
ing program execution with individual sensitivity towards approximation were
explored by Mitra et al. [22]. Lashgar et al. [19] extend the OpenACC program-
ming model with support for loop perforation. Relaxation of synchronizations
is studied in the parallelizing compiler HELIX-UP [7] and by Deiana et al. [10]
who propose a C++ language extension for non-deterministic programs. Some
approaches focus on other parallel semantics, e.g., speculative lock elision [18],
task discarding [29], and breakable dependence [34].

Polyhedral compilation has been proven as an effective way to reason about
loops, both in terms of transformation and modeling. Polyhedral techniques tar-
get affine loop nests and can be used for a variety of tasks such as the efficient
application of code transformations or the design of performance models. The
polyhedral approach is nowadays in use by several automatic parallelization com-
pilers, notable examples are Pluto [6, 3], Pluto+ [5], PPCG [36], Polly [14], and
speculative parallelization [17]. High-level loop transformations are critical for
performance; however, finding the best sequence of transformations is difficult,
and resulting transformations are both machine- and program-dependent. As
optimizing compilers often use simplistic performance models, iterative compi-
lation [26, 25, 13] is widely used to maximize performance. Adaptive Code Re-
finement [32] is a semi-automatic approach that relies on the polyhedral rep-
resentation of stencil programs to apply transformations and to generate an
approximated version of the code.

3

3 ALONA

We show the compilation workflow of our framework in Fig. 1 and it comprises of
eight steps. (1) Starting from the accurate program the SCoPs are extracted. (2)
Create the approximation space by generating perforated SCoPs for each SCoP.
(3) In the next step, the Barvinok score of each approximation is calculated.
(4) The approximated SCoPs are sorted based on the score. (5) The approxima-
tion space is pruned. (6) From the remaining approximated SCoPS, the source
code is synthesized. (7) The selected programs are compiled and executed while
recording performance and accuracy. (8) Finally, Pareto-optimal solutions are
selected. Optionally, a reconstruction phase is performed after step 6.

Extract
SCoPs

Construct
Approx.
Space

Calculate
Barvinok

Scores

Sort SCoPs
by Score

Score-based
Pruning

Synthesize
Selected

Programs

Compile
& Execute
Selected

Programs

Select
Pareto-
optimal

Solutions

(1) (2) (3) (4)

(5)(6)(7)(8)

Fig. 1: ALONA’s Compilation Workflow.

3.1 Polyhedral Loop Nest Perforation

Loop perforation is the technique of skipping parts of a loop. ALONA imple-
ments loop nest perforation with the tools provided by the polyhedral model.
Loop perforation transforms loops to execute a subset of their iterations in order
to reduce the amount of computational work [33]. This transformation can be
accomplished, e.g., by changing the increment of the loop variable or by modify-
ing the loop start and end. Listing 1.2 shows the perforated loop of Listing 1.1:
the loop variable i is incremented by 2 instead of 1 and, therefore, every other
loop iteration is perforated.

4

for(i=0; i<=7; i++) {

/* work() */

}

Listing 1.1: Original Loop.

for(i=0; i<=7; i+=2) {

/* work() */

}

Listing 1.2: Perforated Loop.

3.2 Polyhedral Model

The polyhedral model represents loops by convex polyhedra and uses parametric
integer programming for analysis and transformation. A polyhedron is a convex
set of points in a lattice, i.e., a set of points in a Z vector space that is bounded by
affine inequalities. Loop nests, in their algebraic representation, are called static
control parts (SCoP). A SCoP contains all information about control and data
flow. Loop nests are usually required to have a statically defined control flow. A
SCoP is a maximal set of consecutive statements where loop bounds and condi-
tionals only depend on invariants and global parameters. The global parameters
are constant but statically unknown and only available during runtime.

for(i=0; i<=7; i++) {

S1: C[i] = 0;

for(j=0; j<=7; j++) {

S2: C[i] += A[i][j] * B[j];

}

}

Listing 1.3: Accurate Loop Nest.

Listing 1.3 shows an exemplary loop nest that computes the matrix-vector
product C = A·B, and which we use throughout this section to provide examples
of iteration domain and memory access functions. The loop nest contains two
SCoPs: S1 and S2. The outer loop runs from i = 0 to i ≤ 7, incrementing i
for every iteration and initializing C[i] = 0. The inner loop runs from j = 0 to
j ≤ 7, incrementing j, reading from C[i], A[i][j] and B[j] and writing to C[i].

The iteration domain represents the iterations of a statement in a loop nest
and describes the dynamic instances of all statements in the SCoP. A set of
affine inequalities defines all possible values of the surrounding loop iterators.
Each instance of a statement S is identified by (S, i) where i is the iteration
vector that contains the values of the loop indices of the surrounding loops.

5

0 ≤ i ≤ 7 i

(a) S1

0 ≤ i ≤ 7

0
≤

j
≤

7

i

j

(b) S2

Fig. 2: Iteration Domain for the Loop Nest in Listing 1.3.

The set of inequalities for SCoP S1 in Listing 1.3 consists of 0 ≤ i ≤ 7. The
inequalities bounding the iteration domain of S2 are 0 ≤ i ≤ 7 and 0 ≤ j ≤ 7.
The iteration domain defined by these inequalities is shown in Figure 2. While
S1 is one-dimensional, S2 has two dimensions spanned by i and j.

Memory access functions describe the locations of data that is accessed by state-
ments. Memory accesses are performed through array references. For each state-
ment S, two sets LS and RS exist, each containing (M,f) pairs. Each pair is
a reference to a variable M that is accessed (written L or read R) and a data
access function f that maps the iteration vector in DS to the memory loca-
tion in the variable M . The arrow → denotes the mapping of a statement S(i)
with iteration vector i to variable M(i) where i denotes the location in M . The
memory access functions for Listing 1.3 are LS1 = S1(i)→ C(i), RS1 = ∅ and
LS2 = S2(i)→ C(i), and RS2 = S2(i, j)→ A(i, j), B(j), C(i).

Polyhedral Transformations are accomplished in the polyhedral representation
of a loop nest. These transformations are constructed out of a set of transfor-
mation primitives that mostly correspond to simple polyhedral operations. By
composition of an arbitrary number of transformations, complex optimizations
can be built. The actual code generation happens after all transformations have
been applied and this step is independent of the actual transformations.

3.3 Polyhedral Loop Perforation

Polyhedral loop perforation is implemented in two steps: shrinkage of the itera-
tion domain, and adjustment of the memory accesses.

(1) The iteration domain is bounded by affine inequalities and, in order to shrink
the size of the iteration domain, we alter these inequalities. First, the dimension
which should be reduced in size has to be identified together with the loop
variable, i.e., i. Next, we alter the inequalities to reflect the new size of the
iteration domain. Although this can be done in many ways, we explain here for
reasons of simplicity the following approach: In the inequalities, we multiply all
occurrences of i with the perforation factor f = 2. Consider again SCoP S2 in
Figure 2b. First, we shrink the iteration domain by the perforation factor. The

6

resulting iteration domain is visualized in Figure 3a. The iteration domain is
now half the size in the i-dimension and the inequality for i is updated.
(2) We adjust the memory accesses. Otherwise, a whole chunk of loop instances
is perforated instead of every other instance. The adjustment of the memory
accesses is closely related to the perforation factor f . In fact, in each memory
access, all occurrences of the loop index variable are multiplied by the loop
perforation factor, i.e., i becomes 2*i. Using this approach, we achieve the effect
of a perforated iteration domain, while the iteration domain is in fact dense
and convex. Recall the memory access functions for SCoP S2 from Section 3.2:
LS2 = S2(i) → C(i), and RS2 = S2(i, j)→ A(i, j), B(j), C(i). We multiply
every occurrence of i with 2 in order to adjust the memory accesses. We use Lp

andRp to denote the perforated memory access functions: LS2
p = S2(i)→ C(2i),

and RS2
p = S2(i, j)→ A(2i, j), B(j), C(2i). The result is depicted in Figure 3b.

0 ≤ i ≤ 3

0
≤

j
≤

7

i

j

(a)

0 ≤ 2i ≤ 7

0
≤

j
≤

7

i

j

(b)

Fig. 3: The Intermediate Steps of Polyhedral Loop Perforation.

3.4 Extensions to Classical Loop Perforation

Classical loop perforation [33] has been refined to include parallel programs [30],
to perforate on statement-level and using non-static pattern [20], or to perforate
threads on GPUs [21]. This section shows how our approach generalizes existing
approximation schemes, which are all covered by our framework.
Paraprox [30] uses three schemes to approximate stencil data access patterns:
the center scheme that uses the center value in a stencil to approximate the
neighboring values; the rows scheme that perforates two out of three rows by
using one row to approximate the row above and the row below; and the column
scheme that is a 90° rotated row scheme. The rows and columns scheme can be
implemented straightforwardly using polyhedral perforation on the correspond-
ing inner or outer loop. The center scheme can be obtained by applying first a
perforation of rows and successively a perforation of columns.
Sculptor [20] extends the perforation from loop iterations to individual state-
ments and uses dynamic perforation patterns instead of being limited to fixed
patterns for the whole loop. Sculptor operates on LLVM bitcode, while we op-
erate on high-level C code. Our approach is able to perforate on an individual

7

statement level, and it is able to employ different perforation patterns for dif-
ferent statements. We support different perforation patterns in a loop by first
applying loop splitting, which splits a loop into two sub-loops. Then, we perfo-
rate the new loops individually.
Multi-dimensional Schemes: As a result of using the polyhedral model and per-
forming perforation at SCoP level, ALONA supports multi-dimensional perfo-
ration of loop nests, which is not supported by previous work.

4 Reconstruction

By post-processing the results of an approximated application, the error intro-
duced by the approximation technique can be mitigated. As this process depends
heavily on the application, the reconstruction phase requires an application-
specific or data-specific approach to achieve optimal results. However, in some
cases, even a general approach can be beneficial. The impact of a general and
simple reconstruction approach is also shown by related work [21]. Therefore,
we introduce our reconstruction phase that prevents uninitialized values in the
results of applications.

i

j

(a) Columns

i

j

(b) Rows

Fig. 4: Reconstruction.

Consider a loop where one output element is calculated in each iteration. Af-
ter perforating every other loop iteration, every other output element is correct,
but the remaining output elements are not written at all and, therefore, have
high error. Data often contains redundancy, e.g., spatial redundancy in images,
where pixels close to each other are very likely to have a similar value. We exploit
this redundancy to reconstruct missing data. In our approach, a reconstruction
phase is implemented together with the perforation of SCoPs as this allows us
to easily identify the perforated elements and replace them with nearby approx-
imations. We apply the reconstruction only to the output SCoPs, i.e., when the
final result is written, while we apply normal (non-reconstructed) perforation to
all other SCoPs. As the reconstruction is performed in a post-processing step
outside the polyhedral model, it does not influence polyhedral transformations.

8

The reconstruction phase comprises two steps: (1) identify perforations of
the output SCoP of the application, and (2) synthesize code to reconstruct all
missing output elements. This can be done, e.g., using the nearest neighbor out-
put element that was not perforated. However, also more complex interpolation
is possible. For a two-dimensional loop nest that is perforated in both dimen-
sions, the perforation is separated for each dimension. This example is depicted
in Figure 4. First, the i-dimension is reconstructed (a); then, the j-dimension
of the loop is reconstructed (b). Arrows indicate the source and target of the
reconstruction. Bright points indicate reconstructed data copied from adjacent
dark points. While ALONA includes a generic framework for reconstruction, it
is also possible to integrate application-specific reconstruction phases.

5 Approximation Space Pruning

ALONA generates many approximated code versions. The number of approxi-
mated code versions depends on the number of loop nests, their depth, and the
number of supported skip factors. For example, in Listing 1.3, the approxima-
tion space for a given skip factor and scheme, consists of three approximations:
(1) perforate S1; (2) perforate S2; (3) perforate S1 and S2. Considering different
scheme and factor, the number of possible approximated code versions can be
very large. This section introduces ALONA’s approximation space pruning tech-
nique, which is able to find approximated code versions with low error, therefore
reducing the number of version to be executed, e.g., by search-based autotuners.

5.1 Approximation Ordering

Accurately modeling the error of an approximated program is a complex task,
because the error profile of an application is not only application-specific, but it
depends also on the input data. Instead of trying to accurately model the error,
our approach solves an easier task: ranking each approximated code version so
that, e.g., only those with higher rank are evaluated. The idea to focus on an
ordering problem instead of an accurate (regression) model has been previously
used for performance tuning [9]; here, we use it to filter the most accurate code
versions that are later executed.

Our method establishes an ordering of the possible loop nest approximations
based on the observation that a code version with more perforated iterations is
likely to have a higher error than a code version with fewer perforated iterations.
We calculate this ordering by computing, for each code version, the ratio of loop
iterations that are perforated, which ranges from 0 (all loop iterations perforated)
to 1 (accurate program). For instance, for a program with one loop that is
perforated for every other loop iteration, this ratio equals to 0.5.

5.2 Barvinok Counting Based Pruning

We use pruning to reduce the number of code versions to be tested. Our ap-
proach is based on the observation that there is a connection between the

9

amount of work removed and speedup for many applications. We use Barvi-
nok counting to calculate both the size of the original accurate iteration domain
and the size of the approximated perforated domain. We use the ratio of the

Score(Dp) =

∑
∀i
|Di

p|∑
∀i
|Di|

cardinality of the iteration domain of the perforated
program and the cardinality of the iteration domain of
the original program. In order to calculate this score,
we count the number of instances in the iteration do-
main of each SCoP. We compute the sum of the car-
dinality of Di

p of the perforated program and divide

it by the sum of the cardinality Di for the original program. The resulting ratio
is the amount of perforated loop instances of all SCoPs of the program. This
number is independent of the problem size.

Pruning is used to reduce the optimization time by lowering the number of
configurations considered. First, we apply score-based pruning where configu-
rations below a certain score are discarded. Then, exhaustive search is used to
select optimal solutions.

6 Experimental Evaluation

We evaluate the accuracy and performance of ALONA and compare it to Para-
prox [30], the state-of-the-art perforation technique. Our set of configurations
also include those used in Sculptor [20]; however, we are unable to label the
specific configurations, as we do not know Sculptor’s algorithmic decisions.

We use a set of well-known and well-tested tools for the experimental eval-
uation of our approach. We use the Polyhedral Compiler Collection [28] for the
extraction of the SCoP (clan), which is extended by our framework to implement
the SCoP perforation. Furthermore, we use the Barvinok library to retrieve the
size of the iteration domain. Finally, Cloog is used for code generation and gcc
7.4.0 (-O3) to compile the synthesized code.

6.1 Benchmark Setup

We measure runtime and accuracy of 22 applications from PolyBench/C 4.1 [24]
and three additional applications also used by Paraprox. Our measurements were
conducted on an Intel Core i7-3930K (3.20 GHz). The accuracy of an applica-
tion is heavily influenced by the input data and can span a wide range. We
evaluate the applications with their default input and, therefore, the error is not
representative for all possible inputs. However, when comparing different perfora-
tion configurations, the accuracy trend shows which perforation schemes deliver
higher accuracy. We report the mean relative error (MRE) of the element-wise
difference of true and approximated results.

6.2 Discovered Solutions

In Figure 5, we show detailed speedup and error for six applications. Orange and
red points indicate state-of-the-art techniques. Blue points show approximations

10

Fig. 5: Configurations Discovered by ALONA and State-of-the-art Techniques.

discovered by ALONA. Using the green dashed line, we indicate Pareto-optimal
configurations. We show how ALONA is able to outperform Paraprox both in
terms of accuracy and speedup and, in fact, that many superior solutions are
discovered.

For the fdtd-2d application, there are 26 Pareto-optimal configurations.
ALONA generates approximated programs that are nearly twice as fast when
compared to Paraprox for the same error budget. Many configurations outper-
form Paraprox in both speedup and error. 2mm has 17 Pareto-optimal approxi-
mations, and they result in three clusters of approximately the same error. The
application is very sensitive to approximation and all points result in an error of
at least 50%. Here, ALONA outperforms state-of-the-art techniques in terms of
speedup. There are 12 Pareto-optimal configurations for symm. ALONA yields
a more than 4× higher speedup than state of the art, and it is also able to
provide a lower speedup for the same performance. The clustering of the points
of 3mm is similar to the 2mm application as it performs a similar calculation.
12 configurations are Pareto-optimal and ALONA improves on both error and
speedup. While most configurations generated by ALONA for doitgen have an
error of 50% or higher, there are 3 configurations that have a much lower error of
around 2% and a speedup that outperforms Paraprox’ by 2×. 14 configurations
are Pareto-optimal. syrk has 11 Pareto-optimal configurations and ALONA is
able to improve on the speedup.

Overall, the results show that as our approach generalizes existing perforation
schemes, it is capable to discover new approximation schemes, and many of those
newly found solutions are also Pareto-optimal.

11

0.0 0.2 0.4 0.6 0.8

Error

0

1

2

3

4

S
p
ee
d
u
p

Fig. 6: Effects of Reconstruction.

6.3 Reconstruction

We evaluate a case study detailing the effects of the reconstruction for the bicg
application. The prospects of reconstruction and the importance of application-
specific reconstruction techniques are outlined in Section 4. In our case study,
we use a post-processing step to replace all missing data values in the result with
adjacent data values.

The experimental results are shown in Fig. 6. There are 14 different ap-
proximated code versions. For each of the different approximated programs, we
measure error and speedup, respectively with and without reconstruction. Some
approximations being very similar in performance and accuracy and thus the
points are overlapping. Blue points indicate approximations without reconstruc-
tion. Orange points connected by arrows show the same approximations with
reconstruction enabled. Ideally, the arrows are horizontal lines (same speedup,
accuracy improvement). All arrows are pointing to the bottom left, as the error
is reduced and the speedup is affected. In all cases where the non-reconstructed
results are affected by error, utilizing the reconstruction lowers the error, in many
cases significantly. The speedup is affected moderately in many cases. However,
there are also cases where the speedup decreases sharply, or the approximated
application is slowed down in comparison to the baseline. On average, we are
able to improve the error by approx. 30% while retaining approx. 60% of the
speedup by employing reconstruction.

These results emphasize the importance of reconstruction in order to min-
imize the error: even when using a basic reconstruction technique, there is big
potential to improve the accuracy by an order of magnitude while retaining most
of the performance.

12

5 10 15 20

100

101
Sp

ee
du

p

Score
low
medium
high

2m
m

3m
m bic

g

cor
rel
ati
on

cov
ari
an
ce

do
itg
en

du
rbi

n

fdt
d-2

d

floy
d-w

ars
ha
ll
gem

m
gem

ver

ges
um

mv

jac
ob
i-1
d

jac
ob
i-2
d lu

nu
ssi
nov sym

m
syr

2k syr
k

trm
m

gau
ssi
an

me
an

con
vse

p

0.0

0.2

0.4

0.6

0.8

1.0

E
rr
or

Fig. 7: Speedup and Accuracy of Pareto-Optimal Configurations Discovered by
ALONA.

6.4 Evaluation of Perforation Configurations

Depending on the application, i.e., the number of nested loops, the space of possi-
ble perforation configurations can be very large. There is no single configuration
that is superior to all other configurations, because the target of optimization is
multi-objective: the two goals are high performance and low error.

In Figure 7, we compare Pareto-optimal perforation schemes for all appli-
cations. The figure is built from two related subplots: In the upper bar chart,
we show the speedup of all Pareto-optimal configurations; and in the lower part
we show the corresponding error. We use three color shades from light to dark
that indicate the score. Darker points/bars have a higher score and brighter
points have a lower score. All configurations use no reconstruction. For most of
the applications, the majority of the Pareto-optimal solutions has a low score.
A notable exception is floyd-warshall, which has only a small number of
Pareto-optimal solutions. Solutions with a small speedup have a darker shade,
a medium speedup is indicated by a medium shade and high speedups are usu-
ally brighter shaded. This can be explained by the rationale that perforating
a smaller part leads to a smaller speedup and perforating a larger part of an
application leads to a larger speedup. A similar trend can be observed for the
accuracy.

It should be noted that PolyBench is not curated as an approximate com-
puting benchmark suite. Therefore, its applications are not necessarily resilient
to approximation. Furthermore, in this specific experiment, the results are not
improved by our reconstruction approach as we do not have application-specific
reconstruction routines for all applications. This can be clearly observed, as there
are some applications where the error for most of the configurations is rather
high, e.g., applications with low resilience like 2mm and 3mm.

13

Fig. 8: Speedup and Accuracy in Relation to Score.

Nonetheless, ALONA is able to find some solutions with low error and
a speedup larger than 1 for almost all applications. There are also applica-
tions, where almost all solutions have a low error, e.g., bicg, doitgen, durbin,
jacobi-1d, jacobi-2d, or convsep, which indicates that these applications are
more resilient to approximation.

6.5 Approximation Space Pruning

In Figure 8, the results of our Barvinok-based approximation space pruning are
shown. Each subfigure plots speedup (y-axis) and error (x-axis) for all configu-
rations individually for each application. We calculate the Barvinok-based score
as detailed in Section 5. The brightness of the points indicates the score. No-
tably, for most applications, the set of solutions can clearly be divided into three
large sets with respectively low, medium, and high speedup. This observation
is useful in the context of performing a static pre-filtering of the approximation
space to significantly reduce the number of approximations, e.g., to one third of
all approximations.

Exemplary, for the 2mm application, the time to solution is 99 s for the com-
pilation and 4213 s (approx. 72 min) for executing all application variants. By
using our score-based filtering, we are able to reduce this time to 768 s (approx.
13 min). This time is composed of 39 s for compilation and 729 s for the execution
of the applications.

7 Conclusions and Future Work

ALONA is a new approximation framework that automatically approximates
affine loop nests. By using polyhedral analysis, ALONA extends state-of-the-art
loop perforation techniques and applies perforation and reconstruction on multi-
dimensional loop nests. It also features an optional processing step that recon-
structs missing results and significantly improves the accuracy of the approxi-
mated applications. The large number of approximated code variants constructed
by ALONA are tackled with an approximation space pruning technique, which
filters code variants with larger error thanks to a Barvinok’s counting-based

14

approximation metric. This technique can be combined with search heuristics
and iterative compilation, providing an efficient tool to identify fast code ver-
sions with low error and overall reducing the time to solution. Experimental
results show that ALONA is capable of discovering new approximations that
are Pareto-dominant with respect to approximations found by state-of-the-art
approximation schemes. In particular, whenever we have the same approxima-
tion accuracy as state-of-the-art approaches, ALONA’s performance is better.

In future work, we plan to integrate ALONA with existing polyhedral opti-
mizers and in combination with automatic parallelization.

Acknowledgement

This research has been partially funded by MIUR PON Ricerca e Innovazione
2014-2020 (grant number AIM1872991-1).

References

1. Bao, W., Krishnamoorthy, S., Pouchet, L.N., Sadayappan, P.: Analytical Modeling
of Cache Behavior for Affine Programs. ACM Program. Lang. (2017)

2. Barvinok, A.I.: A polynomial time algorithm for counting integral points in poly-
hedra when the dimension is fixed. Mathematics of Operations Research (1994)

3. Baskaran, M.M., Ramanujam, J., Sadayappan, P.: Automatic C-to-CUDA Code
Generation for Affine Programs. In: Proc. CC (2010)

4. Benabderrahmane, M., Pouchet, L., Cohen, A., Bastoul, C.: The polyhedral model
is more widely applicable than you think. In: Proc. CC (2010)

5. Bondhugula, U., Acharya, A., Cohen, A.: The Pluto+ Algorithm: A Practical Ap-
proach for Parallelization and Locality Optimization of Affine Loop Nests. ACM
TOPLAS (2016)

6. Bondhugula, U., Baskaran, M.M., Krishnamoorthy, S., Ramanujam, J., Rountev,
A., Sadayappan, P.: Automatic Transformations for Communication-Minimized
Parallelization and Locality Optimization in the Polyhedral Model. In: Proc. CC
(2008)

7. Campanoni, S., Holloway, G.H., Wei, G., Brooks, D.M.: HELIX-UP: relaxing pro-
gram semantics to unleash parallelization. In: Proc. CGO (2015)

8. Cherubin, S., Cattaneo, D., Chiari, M., Agosta, G.: Dynamic Precision Autotuning
with TAFFO. TACO (2020)

9. Cosenza, B., Durillo, J.J., Ermon, S., Juurlink, B.: Autotuning stencil computa-
tions with structural ordinal regression learning. In: Proc. IPDPS (2017)

10. Deiana, E.A., St-Amour, V., Dinda, P.A., Hardavellas, N., Campanoni, S.: Uncon-
ventional Parallelization of Nondeterministic Applications. SIGPLAN Not. (2018)

11. Esmaeilzadeh, H., Sampson, A., Ceze, L., Burger, D.: Architecture support for
disciplined approximate programming. In: Proc. ASPLOS (2017)

12. Fernando, V., Franques, A., Abadal, S., Misailovic, S., Torrellas, J.: Replica: A
wireless manycore for communication-intensive and approximate data. In: Proc.
ASPLOS (2019)

13. Ganser, S., Größlinger, A., Siegmund, N., Apel, S., Lengauer, C.: Speeding Up
Iterative Polyhedral Schedule Optimization with Surrogate Performance Models.
TACO (2018)

15

14. Grosser, T., Größlinger, A., Lengauer, C.: Polly - Performing Polyhedral Optimiza-
tions on a Low-Level Intermediate Representation. Parallel Proc. Letters (2012)

15. Gysi, T., Grosser, T., Brandner, L., Hoefler, T.: A fast analytical model of fully
associative caches. In: Proc. PLDI (2019)

16. Imani, M., Garcia, R., Huang, A., Rosing, T.: CADE: Configurable Approximate
Divider for Energy Efficiency. In: Proc. DATE (2019)

17. Jimborean, A., Clauss, P., Pradelle, B., Mastrangelo, L., Loechner, V.: Adapting
the polyhedral model as a framework for efficient speculative parallelization. In:
Proc. PPoPP (2012)

18. Khatamifard, S.K., Akturk, I., Karpuzcu, U.R.: On approximate speculative lock
elision. IEEE Transactions on Multi-Scale Computing Systems 4(2) (2018)

19. Lashgar, A., Atoofian, E., Baniasadi, A.: Loop Perforation in OpenACC. In: Proc.
ISPA (2018)

20. Li, S., Park, S., Mahlke, S.: Sculptor: Flexible approximation with selective dy-
namic loop perforation. In: Proc. ICS (2018)

21. Maier, D., Cosenza, B., Juurlink, B.: Local Memory-aware Kernel Perforation. In:
Proc. CGO (2018)

22. Mitra, S., Gupta, M.K., Misailovic, S., Bagchi, S.: Phase-aware Optimization in
Approximate Computing. In: Proc. CGO (2017)

23. Mittal, S.: A Survey of Techniques for Approximate Computing. ACM Comput.
Surv. (2016)

24. Pouchet, L.N.: Polybench/c 3.2, http://www.cse.ohio-state.edu/ pouchet/soft-
ware/polybench/

25. Pouchet, L.N., Bastoul, C., Cohen, A., Cavazos, J.: Iterative optimization in the
polyhedral model: Part ii, multidimensional time. In: Proc. of PLDI. ACM (2008)

26. Pouchet, L.N., Bastoul, C., Cohen, A., Vasilache, N.: Iterative optimization in the
polyhedral model: Part i, one-dimensional time. In: Proc. CGO (2007)

27. Pouchet, L., Bondhugula, U., Bastoul, C., Cohen, A., Ramanujam, J., Sadayappan,
P., Vasilache, N.: Loop transformations: convexity, pruning and optimization. In:
Proc. POPL (2011)

28. Pouchet, L.N., Bondhugula, U., Bastoul, C., Cohen, A., Ramanujam, R., Sadayap-
pan, P.: Hybrid iterative and model-driven optimization in the polyhedral model
(2009)

29. Rinard, M.: Probabilistic accuracy bounds for fault-tolerant computations that
discard tasks. In: Proc. ICS (2006)

30. Samadi, M., Jamshidi, D.A., Lee, J., Mahlke, S.: Paraprox: Pattern-based approx-
imation for data parallel applications. In: Proc. ASPLOS (2014)

31. Sampson, A., Dietl, W., Fortuna, E., Gnanapragasam, D., Ceze, L., Grossman, D.:
Enerj: approximate data types for safe and general low-power computation. In:
Proc. PLDI (2011)

32. Schmitt, M., Helluy, P., Bastoul, C.: Automatic Adaptive Approximation for Sten-
cil Computations. In: Proc. CC (2019)

33. Sidiroglou-Douskos, S., Misailovic, S., Hoffmann, H., Rinard, M.: Managing per-
formance vs. accuracy trade-offs with loop perforation. In: Proc. ESEC (2011)

34. Udupa, A., Rajan, K., Thies, W.: ALTER: Exploiting Breakable Dependences for
Parallelization. In: Proc. PLDI (2011)

35. Venkatagiri, R., Mahmoud, A., Hari, S.K.S., Adve, S.V.: Approxilyzer: Towards a
systematic framework for instruction-level approximate computing and its appli-
cation to hardware resiliency. In: Proc. MICRO (2016)

36. Verdoolaege, S., Carlos Juega, J., Cohen, A., Ignacio Gómez, J., Tenllado, C.,
Catthoor, F.: Polyhedral Parallel Code Generation for CUDA. ACM TACO (2013)

16

