
Automatic Data Layout Optimizations for GPUs

Klaus Kofler1, Biagio Cosenza12, and Thomas Fahringer1

1 DPS, University of Innsbruck, Austria
2 AES, TU Berlin, Germany

{klaus|tf}@dps.uibk.ac.at, cosenza@tu-berlin.de

Abstract. Memory optimizations have became increasingly important
in order to fully exploit the computational power of modern GPUs. The
data arrangement has a big impact on the performance, and it is very
hard for GPU programmers to identify a well-suited data layout. Clas-
sical data layout transformations include grouping together data fields
that have similar access patterns, or transforming Array-of-Structures
(AoS) to Structure-of-Arrays (SoA).
This paper presents an optimization infrastructure to automatically de-
termine an improved data layout for OpenCL programs written in AoS
layout. Our framework consists of two separate algorithms: The first one
constructs a graph-based model, which is used to split the AoS input
struct into several clusters of fields, based on hardware dependent pa-
rameters. The second algorithm selects a good per-cluster data layout
(e.g., SoA, AoS or an intermediate layout) using a decision tree. Results
show that the combination of both algorithms is able to deliver higher
performance than the individual algorithms. The layouts proposed by
our framework result in speedups of up to 2.22, 1.89 and 2.83 on an
AMD FirePro S9000, NVIDIA GeForce GTX 480 and NVIDIA Tesla
k20m, respectively, over different AoS sample programs, and up to 1.18
over a manually optimized program.

1 Introduction

With the advent of new massively parallel architectures such as GPUs, many re-
search projects focus on memory optimizations. In order to exploit the properties
of the memory hierarchy, a key aspect is to maximize the reuse of data.

In this context, data layout transformation represents a very interesting
class of optimizations. Two typical examples are: organizing data with similar
access patterns in structures or rearranging array of structures (AoS) as structure
of arrays (SoA). Recent work extends the classical SoA layout by introducing
AoSoA (Array of Structure of Array) [16], also called ASA [14]. In this paper we
prefer the expression tiled-AoS, but we remark that all approaches exploit the
same idea: mixing AoS and SoA in a unique data layout.

1.1 Motivation

In this work, we investigate an automatic memory optimization method that can
be easily ported to different GPU architectures, using OpenCL as programming

II

model. We combine together two different optimization strategies: we try to
group together data fields with similar data access patterns and find the best
data layout for each of these clusters.

Considering SAMPO [7] as an example, using a struct containing twelve
fields. The number of possible ways to partition these twelve fields is equal to
4, 213, 597. Considering that this program has minimum run-time of 65 seconds
on an AMD FirePro S9000, depending on the data layout, just evaluating all
the possible partitions (i.e., clusters) would take more than eight years.

Fig. 1: Excerpt of SAMPO’s Optimization Space. Execution times vary from 65
seconds (in red) to 104 seconds (in blue).

The exploration of the whole search space, including both fields’ clustering
and data tiling (i.e., finding the best data layout for each of these clusters) would
take more than 400 years.

Figure 1 shows a subset of the optimization space for SAMPO. The heat-
map on top depicts all possible data tiling for the one-cluster grouping of all
the twelve data fields. For this partition, the un-tiled AoS layout is slow (blue);

III

by increasing the data tile-size the run-time decreases (shown in red), and with
data tile-size bigger than 12K it also outperforms the SoA layout. The lower
heat-map shows the performance results while applying the specific data tiling
suggested by our algorithm (Section 3.1). The fastest version of the shown op-
timization sub-space is achieved when we use a tile-size of 16 for the smaller
struct containing two fields, 24 for the bigger struct with six fields, and having
the other fields in a SoA layout. This example program also shows that the best
tile-size can be different within the same code and different clusters: when us-
ing only one cluster, the highest performance is achieved with large data tiles;
however, different clustering delivers better performance with smaller data tiling
sizes. This suggests that the optimal data tile-size highly depends on the size of
the individual cluster.

Our work is the first approach which automatically tackles the two problems
mentioned above. Our contributions are:

– A Kernel Data Layout Graph (KDLG) model extracted from an input OpenCL
kernel; each vertex weight represents structure field’s size and the edge weight
expresses intra-data field memory distance.

– A two-phase algorithm: first, a KDLG partitioning algorithm — driven by
a device-dependent graph model — splits the original graph into partitions
with similar data access patterns; second, for each partition we exploit a data
layout selection method — driven by a device-dependent layout calculation
— selects the most suitable layout from AoS, SoA and tiled-AoS layouts.

– An evaluation of five OpenCL applications on three GPUs showing a speedup
of up to 2.83.

2 Related Work

The problem of finding an optimal layout is not only NP-hard, but also hard to
approximate [11]. Raman et al. [9] introduced a graph based model to optimize
structure layout for multi-threaded programs. They developed a semi-automatic
tool which produces layout transformations optimized for both false sharing and
data locality. Our work uses a different graph based model encoding the vari-
ables memory distance and data structure size, in order to provide a completely
automatic approach; we also support AoS, SoA and tiled-AoS layouts. Kendermi
et al. [5] introduced an inter-procedural optimization framework using both loop
optimizations and data layout transformation; our method does not apply to a
single function only, but can span over multiple functions.

Data layout transformations such as SoA conversion have been described to
be the core optimization techniques for scaling to massively threaded systems
such as GPUs [13]. DL presented data layout transformations for heterogeneous
computing [15]; DL supports AoS, SoA and ASTA and implements and auto-
matic data marshaling framework to easily change data layout arrangements.
Our work supports similar data layouts, but we provide an automatic approach
for the layout selection. MATOG [16] introduces a DSL-like, library-based ap-
proach which optimizes GPU codes using either static and empirical profiling to

IV

adjust parameters or to change the kernel implementation. MATOG supports
AoS, SoA and AoSoA with 32 threads (to match the warp size on CUDA) on
multi-dimensional layouts and builds an application-dependent decision tree to
select the best layout. Dymaxion [4] is an API that allows programmers to opti-
mize memory mapping on heterogeneous platforms. It extends NVIDIA’s CUDA
API with a data index transformation and a latency hiding mechanism based
on CUDA stream. Dymaxion C++ [3] further extends prior work. However, it
does not relieve the programmer from selecting a good data layout.

3 Method

Our approach tries to answer two complex questions: (1) What is the best way
to group data fields? (2) For each field cluster, what is the best data layout?

Once clusters have been identified, for each cluster we try to find the best
possible layout within that cluster (i.e., homogenous layout). Our model supports
AoS, SoA, as well as tiled-AoS with different tile-sizes.

In the next section we introduce a novel graph based model, where we encode
data layout, field’s size and field locality information. The presented two-step
approach (1) identifies field partitions (i.e., clusters of fields) with high locality
within intra-partition fields and (2) determines an efficient data layout for each
partition.

3.1 Kernel Data Layout Graph Model

We define a Kernel Data Layout Graph (KDLG) as an undirected, complete
graph whose nodes represent fields of the input struct (assumed to have AoS
layout). The KDLG has two labeling functions: σ for verteices, representing
the field’s data size; δ for edges, representing the memory distance (or inverse-
affinity) between fields. Formally, a KDLG is a quadruple defined as follows:

KDLG =(F,E, σ, δ)

where F is the set of all fields of the struct, which corresponds to the set
of nodes in the KDLG . E = F 2 r {(x, x)|x ∈ F} is the set of all edges e =
{(f1, f2)|f1, f2 ∈ F}. The mapping function σ : F → N returns the size of a field
f in bytes, e.g., if f refers to a field of type int, then σ(f) = 4, according to the
OpenCL specifications. δ : E → {N ∪∞} returns the weight of an edge e. The
mapping function δ((f1, f2)) is defined as the memory distance between the two
fields f1 and f2 by counting the number of unique memory locations, in bytes,
touched by the program between the instruction where they are accessed.

We borrow the idea of memory distance from [9] and extend it with the actual
data type size, which is important to distinguish different memory behaviors.

The KDLG is based on an OpenCL kernel. The set F will have a vertex for
each field defined in the structure, which is passed as an argument to the device
kernel function. For each vertex f , the σ function returns the actual type’s size
in bytes of the corresponding field of f .

V

struct T {
float a, b, c;
double d;

};
__kernel fun(__global T *t) {

float a, b, c;
double d;
int id = get_global_id(0);
double sum = 0;
for(int i=id; i<id+32; i++)

sum += t[i].a * t[i].b;
t[id].c = sum;

};

(a) Kernel code

a
4

b
4

c
4

d
8

4

256

2
5
2

∞

∞

∞

(b) Generated KDLG

Fig. 2: A KDLG generated by a sample input data layout and kernel. Darker
edges show fields that are closer in memory (smaller δ).

Figure 2b displays the KDLG generated from the code shown in 2a: The
fields a and b are always accessed consecutively, therefore δ(a, b) is 4 bytes. c
is accessed after the for loop with 32 iterations, therefore δ(c, b) = 252 and
δ(c, a) = 256 bytes, resulting from the 32 iterations that access 2 ·4 bytes in each
iteration. d is never accessed, therefore its distance from other fields is ∞.

Our graph based model unrolls all loops before starting the analysis. There-
fore, it assumes that loop bounds are known at compile time. If not known, we
use a OpenCL kernel specific loop size inference heuristic to have a good approx-
imation (see Section 3.1). Our analysis focuses on global memory operations, as
they are considerably slower than local and private memory operations

Let MI (f) define the set of all global memory instructions (loads and stores)
involving the data field f . Our distance function δ between two fields f1 and f2
is defined by taking into account the maximum-memory-distance path between
the accessing instructions i1 ∈ MI (f1) and i2 ∈ MI (f2).

In order to calculate δ, we use a data flow analysis where each node of the
control flow graph (CFG) consists of a single instruction. The function σ(i)
returns the number of bytes which are written to/read from the global memory
in instruction i. We define IN and OUT as

IN i[j] = min
x∈pred(j)

(OUTi[x]) OUT i[j] =

{
0 if i = j

IN i[j] + σ(j) if i 6= j

We define a instruction-memory distance function MD(i1, i2) as

MD(i1, i2) = max(OUTi1 [i2], OUTi2 [i1])

so that MD(i1, i2) = MD(i2, i1). We calculate δ(f1, f2), the memory distance
between the fields f1 and f2, as the maximum memory distance between all
instructions in MI(f1) and MI(f2) as follows:

δ(f1, f2) = max

(
max

i∈MI (f1),j∈MI (f2)
MD(i, j)

)

VI

Therefore, we can use δ(f1, f2) to assign a weight to each edge (f1, f2) ∈ E.
We conservatively use the maximum, which leads to higher weights on the

KDLG ’s edges and leads to more clusters; since more clusters have a lower risk
of performance loss on our target architectures.

KDLG Partitioning The first step of our algorithm identifies which fields in
the input data structure should be grouped together. Formally, we assume that
a field partitioning C of the KDLG (i.e, field clusters) is good if ∀e ∈ C|δ(e) < ε,
where ε is a device dependent threshold. We define ε as the L1 cache line size
of the individual GPUs. The values of ε are listed in Table 1. We use this value
as it is the smallest entity that can be loaded from the L1 cache and therefore
should be loaded at once.

We propose a strategy based on Kruskal’s Minimum-weight Spanning Tree
(MST) algorithm [8] that extends the classical MST algorithm with an ε-based
early termination criteria and multiple clusters of nodes (i.e., struct fields).

KDLG-Partitioning(F,E, δ, ε)

1 C = ∅
2 for each field f ∈ F
3 C = C ∪ {{f}}
4 Eε = {e ∈ E : δ(e) < ε}
5 for each edge (f1, f2) ∈ Eε
6 c1 = {x ∈ C|f1 ∈ x}
7 c2 = {x ∈ C|f2 ∈ x}
8 if c1 6= c2
9 C = (C r {c2, c1}) ∪ {c1 ∪ c2}

10 return C

It takes as input a KDLG , previously computed from an input kernel, and
a threshold ε. It starts by creating a partitioning with |F | sets, each of which
contains one field in F (lines 1–3). Line 4 initializes Eε for all edges in E with
a weight smaller then ε, according to the weighting function δ. The for loop in
lines 5–9 checks, for each edge (f1, f2), whether the endpoints f1 and f2 belong
to the same set. If they do, then the edge is discarded. Otherwise, the two sets
are merged in line 9. The complexity of this algorithm is O(|E| · |F |). Figure
3 shows three possible output partitions that can be generated from the graph
seen in Figure 2b using different ε values.

Loop Bounds Approximation When generating the test data to select ε we
use loops with a fixed number of iterations, in order to to accurately understand
the memory distance between two memory accesses. In real world codes, the
actual number of iterations is often not known at compile time. Therefore we use
a heuristic that is specifically designed for OpenCL kernel codes. If the number
of loop iterations are determined by compile-time constants, we use the actual
number of iterations. If not, we apply a heuristic to approximate the number of
iterations: When a loop performs one iteration for each OpenCL work-item [6]

VII

a

b

c

d

4

256

2
5
2

∞

∞

∞

(a) ε = 1

a

b

c

d

4

256

2
5
2

∞

∞

∞

(b) ε = 100

a

b

c

d

4

256

2
5
2

∞

∞

∞

(c) ε = 10000

Fig. 3: Different output partitions using different ε values on a KDLG .

of the work-group [6], we estimate it has 256 iterations, as the work-group size
is usually in this range. When a loop performs one iteration for each work-item
of the NDRange [6], we assume it will have 1 · 106 iterations. If the number of
iterations is neither constant nor linked to the work-group size or NDRange,
we estimate it to have 512 · 103 iterations. The estimation of loop bounds is not
very sensitive: we only need to distinguish short loops, which may not completely
flush the L1 cache, from long ones.

3.2 Per-Cluster Layout Selection

After KDLG-Partitioning, we assume that each field in the same cluster has
similar memory behavior. Therefore, all the fields within a cluster should have
the same data layout arrangement, e.g., tiled-AoS with a specific tile-size.

To understand what layout is best for a given cluster, we generate different
kernels corresponding to a simple one-cluster KDLG where δ is roughly the same
for each pair of fields. The kernel consists of a single for-loop with a constant
number of iterations n. The value of n comprises all powers of two from 128 to
16384. We evaluated the performance of these kernels with different combinations
of loop size n, number of structure fields m, and tile-size t.

From the results we derive a device-dependent function Select-Tilesize(σ(c))
which returns the suggested layout for a cluster c, where σ(c) =

∑
f∈c σ(f) and

σ(f) returns the size of the field f in bytes. Select-Tilesize is implemented
using a decision tree, constructed by the C5.0 algorithm [12]. σ(c) is the only
attribute the decision tree depends on. The potential target classes are AoS ,
SoA and all powers of two from 21 to 215. The performance measurements of the
aforementioned kernels are used to generate the training data.For each kernel
we create a training pattern for the fastest tile-size as well as all other tile-sizes
that are less than 1% slower than the fastest one. These training patterns consist
only of the size of the structure σ(c), which is the only feature while the used
tile-size acts as the target value. Generating training patterns not only for the
fastest tile-size but for all which achieve at least 99% of it, as well as several
training patterns for different structures with the same size, may lead to con-
tradicting training patterns. However, our experiments demonstrated that the

VIII

resulting decision tree is more accurate and less prone to overfitting. C5.0 was
used with default settings; its run-time was about 1ms, depending on the input.

3.3 Final algorithm

In order to achieve best results, we combine the two algorithms described in
Section 3.1 and Section 3.2. Before applying these algorithms, one has to iden-
tify the device dependent factor ε and construct a decision tree to be used in
function Select-Tilesize, as described in the previous sections. Furthermore,
the KDLG graph is constructed and the actual memory layout for the program
to be optimized is selected at compile time. The selection of the memory layout
is described by the following pseudo code:

LayoutOptimize(F,E, δ, ε)

1 L = ∅
2 C = KDLG-Partitioning(F,E, δ, ε)
3 for each cluster c ∈ C
4 t = Select-Tilesize(σ(c))
5 L = L ∪ {(c, t)}
6 return L

Line 2 calls the KDLG-Partitioning algorithm and returns a set of clusters
C in which the corresponding structure should be split. Then the decision tree
determines an efficient tiling factor for each of these clusters and stores the
resulting pair (cluster, tile-size) (line 3-5).

4 Experimental Results

To verify the validity of our approach we implemented a prototype of our frame-
work and observed its performance on several OpenCL applications. The deploy-
ment of our system is split into two parts: A device dependent part which has to
be performed once for each GPU (installation time), and a program dependent
part, which is executed at the compile time of the program. These two parts are
depicted in Figure 4. The device dependent part consists of identifying the L1
cache line size to be used as ε and running a set of training programs to collect
the information needed to build the decision tree as defined in Section 3.2. Col-
lecting all the necessary data requires to run many benchmarks takes 196, 158
and 299 minutes on the FirePro, GeForce and Tesla, respectively. The program
dependent part constructs a KDLG graph for the structure to be optimized in
the corresponding program. This graph is hardware independent.By combining
the KDLG graph with the hardware depended ε we split the struct into sev-
eral clusters (Section 3.1). For each of these clusters we query the hardware
dependent decision tree to obtain the tile-size to be used (Section 3.2).

To evaluate our framework we run different programs on three different
GPUs. The test programs are listed in Table 2. In each program we focus on
the structure with the most instances and try to optimize its layout. The result

IX

Application code Split structs
into clusters

installation time

compile time

GPU L1 cache
line size ϵ GPU

Execution
Build decision tree

Build KDLG Apply tiling

Intermediate
transformed

code

Final transformed
code

Execution

Measurements
Tiling

training
codes

GPU

Fig. 4: Work-flow of our data layout optimization process.

Table 1: Properties determined using our algorithms

Hardware ε Decision tree

AMD
FirePro
S9000

64 ≤ 20

≤ 12
1024

512

> 48
16384

≤ 32
AoS

32

NVIDIA
GeForce
GTX 480

128 ≤ 12

≤ 8
AoS

SoA

≤ 96
512
SoA

NVIDIA
Tesla
K20m

128 ≤ 48

≤ 20
SoA

8192

≤ 96
16384

32768

of our framework on five tested programs is shown in Table 2. The data layouts
proposed by our system always reach at least the performance of the AoS data
layout. In the following paragraphs we give more details about three example
test cases. For all charts we use AoS as a baseline and report the speedup of four
transformed versions: SoA, the version generated after applying the KDLG al-
gorithm and splitting the structure if applicable, a tiled AoS version were we use
the tile-size proposed by our hardware dependent decision tree-based algorithm,
and the final result of our framework as described in Section 3.3.

The first test case that we used to evaluate our framework is N-body, which
performs a direct summation of the forces of all particles on every other par-
ticle. The struct in the used implementation consists of two fields with a size
of 16 bytes each. As those fields have a big memory distance, the KDLG-based
algorithm will split those fields into separate structs. Therefore, the result af-
ter applying the KDLG-based optimization is the same as when using the SoA
layout. Furthermore, applying our tiling algorithm after the KDLG-based algo-

X

Table 2: Test programs

struct size affected loop bound speedup over AoS
Test codes bytes fields kernels approx.a FirePro GeForce Tesla

N-body 32 2 1 n 1.01 1.06 1.01
BlackScholes [2] 28 7 1 – 1.00 1.43 2.83
Bitonic sorting 16 4 1 u 1.47 1.50 1.38
LavaMD [10] 36 3 1 c,u 2.22 1.89 2.07
SAMPO 48 12 9 w,u 2.19 1.59 1.96

a Used Loop bound approximations Section 3.1: loop over all work-items in the
NDRange (n), over the work-group size (g), with constant boundaries (c), with
unknown boundaries (u).

rithm has no effect. The speedup achieved is shown in Figure 5a. It clearly shows
that the tiled version of the program is not only slower than the one in SoA data
layout, but also slower than our baseline implementation. This applies to all
tile-sizes we evaluated. However, since our framework uses a combination of two
layout optimizations, it still correctly selects SoA, which is the data layout with
the highest performance for this program on all tested GPUs.

0,7

0,8

0,9

1,0

1,1

FirePro GeForce Tesla

SoA KDLG

(a) N-body

0,8

1,0

1,2

1,4

1,6

FirePro GeForce Tesla

Tiling KDLG + Tiling

(b) Bitonic sorting

0,8

1,2

1,6

2,0

2,4

FirePro GeForce Tesla

Manually optimized

(c) SAMPO

Fig. 5: Speedup over AoS implementation on two example applications using
different data layouts.

Bitonic Sort [1] is a sorting algorithm optimized for massively parallel hard-
ware such as GPUs. The implementation that we are using sorts a struct of four
elements, where the first element acts as the sorting-key. As all elements are
always moved together, the KDLG-based algorithm results in one single cluster
for any ε ≥ 4. Therefore, the version generated by the KDLG-based algorithm
is the same as AoS. The decision-tree-based tiling algorithm converts this lay-
out into a tiled-AoS layout with a tile-size of 512 bytes for the FirePro and
GeForce while it suggests to use SoA on the Tesla. The results can be found
in Figure 5b. It clearly shows that, although the KDLG-based algorithm fails
to gain any improvement over AoS, the decision-tree-based algorithm as well as

XI

the combination of both algorithm exceeds the performance of the AoS based
implementation by a factor of 1.38 to 1.5. Furthermore, it delivers performance
that is comparable or superior than the one achieved by a SoA implementation.

SAMPO [7] is an agent-based mosquito point model in OpenCL, which is
designed to simulate mosquito populations to understand how vector-borne ill-
nesses (e.g., malaria) may spread. The version available online is already manu-
ally optimized for AMD GPUs. Therefore, we ported this version to a pure AoS
layout, where each agent is represented by a single struct with twelve fields. The
measurements are displayed in Figure 5c. The results clearly show, that SoA
yields a much better performance than AoS on all tested GPUs. Applying the
KDLG-based algorithm already results in a speedup between 1.54 and 2.18 on
the three tested GPUs, which is within ±10% of the SoA version.Applying tiling
to the AoS implementation shows good results on the NVIDIA GPUs. Also the
AMD GPU benefits from tiling, but it does not reach the performance of the
SoA version or the version optimized with the KDLG-based algorithm. Apply-
ing tiling to the latter version further increases the performance on all evaluated
GPUs and leads to a speedup over the AoS version of 2.19, 1.59 and 1.96 on
the FirePro, GeForce and Tesla, respectively outperforming any other version
we tested. Even the manually optimized implementation is outperformed by 7%,
10% and 18% on the FirePro, GeForce and Tesla, respectively.

5 Discussion

The results clearly show, that programs with AoS data layout are not well suited
for GPUs. SoA delivers a much higher performance on all GPU/program combi-
nations we tested. However, also SoA fails to achieve the maximum performance
in some cases. We observed that a tiled-AoS can achieve results that are usu-
ally equal or better compared to the ones achieved with an SoA layout. But
tiled-AoS is not suited for all programs. Similarly, splitting structures in several
smaller ones based on a KDLG is beneficial for most programs. However, also
this technique fails to improve the performance of some applications . Therefore,
combining these two algorithms leads to much better overall results than each
of them can achieve individually. This is underlined by the results of SAMPO,
where the combination of both algorithms does not only outperform the results
of each algorithm applied individually, but also leads to higher performance than
obtained by both, a SoA layout and the manually optimized layout.

6 Conclusions

We presented a system to automatically determine an improved data layout for
OpenCL programs.Our framework consists of two separate algorithms: The first
one constructs a KDLG , which is used to split a given struct into several clusters
based on the hardware dependent parameter ε. The second algorithm constructs
a decision tree, which is used to determine the tile-size for a certain structure
when converting it from AoS to tiled-AoS or SoA layouts.

XII

The combination of both algorithms is crucial, as using only one of them often
leads to no improvement over AoS. The layouts proposed by our framework result
in speedups of up to 2.22, 1.89 and 2.83 on an AMD FirePro S9000, NVIDIA
GeForce GTX 480 and NVIDIA Tesla k20m, respectively.

Acknowledgments This project was funded by the FWF Austrian Science
Fund as part of project I 1523 ”Energy-Aware Autotuning for Scientific Ap-
plications” and by the Interreg IV Italy-Austria 5962-273 EN-ACT funded by
ERDF and the province of Tirol.

References

1. Batcher, K.E.: Sorting networks and their applications. In: Proc. of the April 30–
May 2, 1968, Spring Joint Computer Conference. pp. 307–314. AFIPS’68 (Spring),
ACM, New York, NY (1968)

2. Black, F., Scholes, M.: The pricing of options and corporate liabilities. The Journal
of Political Economy 81 (1973)

3. Che, S., Meng, J., Skadron, K.: Dymaxion++: a Directive-Based API to Optimize
Data Layout and Memory Mapping for Heterogeneous Systems. AsHes’14 (2014)

4. Che, S., Sheaffer, J.W., Skadron, K.: Dymaxion: Optimizing memory access pat-
terns for heterogeneous systems. In: SC’11. pp. 13:1–13:11. ACM, New York, NY
(2011)

5. Kandemir, M., Choudhary, A., Ramanujam, J., Banerjee, P.: A framework for inter-
procedural locality optimization using both loop and data layout transformations.
In: Proc. of the Int. Conference on Parallel Processing. pp. 95–102 (1999)

6. Khronos Group: OpenCL 1.2 Specification (Apr 2012)
7. Kofler, K., Davis, G., Gesing, S.: Sampo: An agent-based mosquito point model in

opencl. In: ADS’14. pp. 5:1–5:10. Society for Computer Simulation International,
San Diego, CA (2014)

8. Kruskal, J.B.: On the Shortest Spanning Subtree of a Graph and the Traveling
Salesman Problem. Proc. of the American Mathematical Society 7(1), 48–50 (1956)

9. Raman, E., Hundt, R., Mannarswamy, S.: Structure layout optimization for multi-
threaded programs. In: CGO’07. pp. 271–282. IEEE Computer Society, Washing-
ton, DC (2007)

10. Rodinia: LavaMD (Nov 2014), http://www.cs.virginia.edu/˜skadron/
wiki/rodinia/index.php/LavaMD

11. Rubin, S., Bod́ık, R., Chilimbi, T.: An efficient profile-analysis framework for data-
layout optimizations. In: POPL’02. pp. 140–153. ACM, New York, NY (2002)

12. RULEQUEST RESEARCH: Data mining tools see5 and c5.0 (Oct 2014), https:
//www.rulequest.com/see5-info.html

13. Stratton, J.A., Rodrigues, C.I., Sung, I.J., Chang, L.W., Anssari, N., Liu, G.D., mei
W. Hwu, W., Obeid, N.: Algorithm and data optimization techniques for scaling
to massively threaded systems. IEEE Computer 45(8), 26–32 (2012)

14. Strzodka, R.: Data layout optimization for multi-valued containers in opencl. J.
Parallel Distrib. Comput. 72(9), 1073–1082 (2012)

15. Sung, I.J., Anssari, N., Stratton, J.A., mei W. Hwu, W.: Data layout transforma-
tion exploiting memory-level parallelism in structured grid many-core applications.
International Journal of Parallel Programming 40(1), 4–24 (2012)

16. Weber, N., Goesele, M.: Auto-tuning complex array layouts for gpus. In: Proc. of
Eurographics Symposium on Parallel Graphics and Visualization. EGPGV14, EG

http://www.cs.virginia.edu/~skadron/wiki/rodinia/index.php/LavaMD
http://www.cs.virginia.edu/~skadron/wiki/rodinia/index.php/LavaMD
https://www.rulequest.com/see5-info.html
https://www.rulequest.com/see5-info.html

	Automatic Data Layout Optimizations for GPUs

