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ABSTRACT
Clusters of heterogeneous nodes composed of multi-core CPUs
and GPUs are increasingly being used for High Performance
Computing (HPC) due to the benefits in peak performance
and energy efficiency. In order to fully harvest the com-
putational capabilities of such architectures, application de-
velopers often employ a combination of different parallel
programming paradigms (e.g. OpenCL, CUDA, MPI and
OpenMP), also known in literature as hybrid programming,
which makes application development very challenging. Fur-
thermore, these languages offer limited support to orchestrate
data and computations for heterogeneous systems.

In this paper, we present libWater, a uniform approach
for programming distributed heterogeneous computing sys-
tems. It consists of a simple interface, compliant with the
OpenCL programming model, and a runtime system which
extends the capabilities of OpenCL beyond single platforms
and single compute nodes. libWater enhances the OpenCL
event system by enabling inter-context and inter-node device
synchronization. Furthermore, libWater’s runtime system
uses dependency information enforced by event synchroniza-
tion to dynamically build a DAG of enqueued commands
which enables a class of advanced runtime optimizations.
The detection and optimization of collective communication
patterns is an example which, as shown by experimental re-
sults, improves the efficiency of the libWater runtime system
for several application codes.

Categories and Subject Descriptors
C.1.3 [Other Architecture Styles]: Heterogeneous (hybrid)
systems; D.3.2 [Language Classifications]: Concurrent, dis-
tributed, and parallel languages; D.3.4 [Processors]: Run-
time Environments

Keywords
OpenCL, MPI, distributed computing, heterogeneous com-
puting, programming model, runtime system
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1. INTRODUCTION
Recently, the major chip manufacturers have faced the

problem of three walls [7]: the power wall, the instruction
level parallelism wall, and the memory wall. This turned the
development of hardware design towards multi- and many-
core CPUs, next to special purpose hardware and accelerators
such as GPUs. As a result, engineers and academics are per-
vasively embracing the use of heterogeneous architectures to
attain the highest performance possible from a single com-
pute node.

However, heterogeneous computing also poses the new
challenge of how to handle the diversity of execution envi-
ronments and programming models. The Open Comput-
ing Language [19] introduces an open standard for general-
purpose parallel programming of heterogeneous systems.
An OpenCL program may target any OpenCL-compliant
device and today many vendors such as Adapteva, Altera,
AMD, IBM, Intel and NVidia provide an implementation of
the OpenCL standard. An OpenCL program comprises a host
program and a set of kernels intended to run on a compute
device. It also includes a language for kernel programming,
and an API for transferring data between host and device
memory and for executing kernels.

Single node hardware design is shifting to a heterogeneous
nature. At the same time many of today’s largest HPC sys-
tems are clusters that combine heterogeneous compute de-
vice architectures [4]. Although OpenCL has been designed
to work with multiple devices, it only considers local devices
available on a single machine. However, the host-device
semantics can be potentially applied to remote, distributed
devices accessible on different compute nodes.

Porting single-node multi-device applications to clusters
that combine heterogeneous compute device architectures is
not straightforward and, in addition, it requires the use of a
communication layer for the data exchange between nodes
(e.g. MPI [25]). Writing programs for such platforms is er-
ror prone and tedious. Therefore new abstractions, program-
ming models and tools are required to deal with this problem.

This paper introduces libWater, a library-based extension
of the OpenCL programming paradigm that simplifies the
development of applications for distributed heterogeneous
architectures. libWater aims to improve both productivity
and implementation efficiency when parallelizing an appli-
cation targeting a heterogeneous platform by achieving two
design goals: (i) transparent abstraction of the underlying
distributed architecture, such that devices belonging to a re-
mote node are accessible like a local device; (ii) access to



performance-related details since it supports the OpenCL
kernel logic.

The main contributions of this paper are:

• The presentation of the libWater programming model,
which extends the OpenCL standard by replacing the
host code with a simplified interface. The definition of a
novel device query language (DQL) for OpenCL device
management and discovery.

• A lightweight distributed runtime environment which
dispatches the work between remote devices, based on
asynchronous execution of both communications and
OpenCL commands. libWater runtime also collects and
arranges dependencies between commands in the form
of a powerful representation called command DAG.

• A demonstration of how the command DAG can be ef-
fectively exploited to improve the scalability. For this
purpose we introduce a collective communication pat-
tern recognition analysis and optimization that matches
multiple single point-to-point data transfers and dy-
namically replaces them with a more efficient collective
operation (e.g. scatter, gather and broadcast) supported
by MPI.

• A study of the scalability of libWater on a real pro-
duction cluster using up to 64 homogeneous compute
nodes. Results show that an efficiency of around 64%
is achieved, on average, for 6 application codes. Fi-
nally we demonstrate the suitability of libWater for a
heterogeneous GPU cluster for two codes.

The rest of the paper is organized as follows. Section 2 and
3 provide an introduction to OpenCL and libWater program-
ming model. Section 4 describes the distributed runtime sys-
tem and the underlying command DAG representation. The
runtime optimizations are treated in Section 5 and the exper-
imental evaluation is presented in Section 6. Section 7 and 8
discuss related work and conclusions.

2. THE OPENCL PROGRAMMING MODEL
OpenCL is an open industry standard for programming

heterogeneous systems. The language is designed to support
devices with different capabilities such as CPUs, GPUs and
accelerators. The platform model comprises a host connected
to one or more compute devices. Each device logically con-
sists of one or more compute units (CUs) which are further
divided into processing elements (PEs). Within a program,
the computation is expressed through the use of special func-
tions called kernels that are, for portability reason, compiled at
runtime by an OpenCL driver. Interaction with the devices
is possible by means of command-queues which are defined
within a particular OpenCL context. Once enqueued, com-
mands – such as the execution of a kernel or the movement of
data between host and device memory – are managed by the
OpenCL driver which schedules them on the actual physical
device.

Commands can be enqueued in a blocking or non-blocking
way. A non-blocking call places a command on a command-
queue and returns immediately to the host, while a blocking-
mode call does not return to the host until the command has
been executed on the device. For synchronization purpose,
within a context, event objects are generated when kernel and

memory commands are submitted to a queue. These objects
are used to coordinate execution between commands and
enable decoupling between host and devices control flows.

Despite being a well designed language that allows the
access to the compute power of heterogeneous devices from
a single, multi-platform source code base, OpenCL has some
drawbacks and limitations. One of the major drawbacks is
that, because being created as a low-level API, a significant
amount of boilerplate code is required even for the execution
of simple programs. Developers have to be familiar with
numerous concepts (i.e. platform, device, context, queue, buffer
and kernel) which make the language less attractive to novice
programmers. Another important limitation is that, although
it was designed to address heterogeneous systems, in case
of devices from different vendors, objects belonging to the
context of one vendor are not valid for other vendors. This
limitation clearly becomes a problem when synchronization
of command queues across different contexts is needed.

3. THE LIBWATER PROGRAMMING
INTERFACE

libWater is a C/C++ library-based extension of the OpenCL
programming paradigm that simplifies the development of
distributed heterogeneous applications. It inherits the main
principles from the OpenCL programming model trying to
overcome its limitations. While maintaining the notion of
host and device code, libWater exposes a very simple pro-
gramming interface based on four key concepts: device, buffer,
kernel and event. A device represents a compute device, but
differently from the original paradigm this single object is
an abstraction of the OpenCL platform, device, queue and
context concepts. Such simplification reduces the number of
source code lines necessary for the initialization of the de-
vices, and thus avoids the boilerplate configuration code that
is usually present in every OpenCL program. Furthermore,
the library is not restricted to a single node but, taking inter-
nally advantage of the message passing model, it provides
access to devices on remote nodes as if they were locally
available.

Since libWater can grant access to a large number of distinct
devices, the selection of a particular one can be cumbersome.
In order to simplify this important aspect, libWater introduces
a novel domain specific language for querying devices. A
device query language (DQL) query statement follows an SQL-
like structure, that is composed of 4 basic clauses with the
following syntax:

SELECT [ALL | TOP k | POS i]
FROM NODE [n [, ...]]
WHERE [restrictions attribute values]
ORDER BY [attribute [, ...]]

The SELECT clause (the only one which is mandatory) re-
spectively allows the selection of all the devices, the first top k,
or a particular device from the device list generated under the
restrictions on the following clauses. With FROM NODE a single
node or a list of nodes can be specified narrowing the range
of selectable devices to those particular nodes. The clauses
WHERE and ORDER BY allow the control of the device restric-
tions on attribute values and the order in which the devices
will be returned. The possible attribute values are currently
those exposed by the OpenCL clGetDeviceInfo function. A
DQL use case is shown and discussed in Section 4.2. DQL



Device Management (wtr_)

void init_devices(’DQL’, ...) device get_device(’DQL’, ...)

int get_num_devices() void release_devices()

void print_device_infos(device)

Buffer Management (wtr_)

buffer create_buffer(device, mem_flag, size, evt)

void write_buffer(buffer, size, source_ptr, wait_evt, evt)

void read_buffer(buffer, size, dest_ptr, wait_evt, evt)

void release_buffer(buffer, wait_evt, evt)

Kernel Management (wtr_)

kernel create_kernel(device, name, kernel_name, build_options,

flag, evt)

void run_kernel(kernel, work_dim, global_work_size,

local_work_size, wait_evt, evt, num_args, ...)

void release_kernel(kernel, wait_evt, evt)

Event Management (wtr_)

event create_event() void release_event(evt)

event merge_events(num, ...) void wait_for_events(num, ...)

void init_event_array(num, evt)

void release_event_array(num, evt)

Table 1: The complete libWater API.

queries can be used for both device initialization and device
selection. The latter must be a subset of the former and since
libWater’s device concept represents a single device only, the
function wtr_get_device only accepts queries that make use
of the POS clause.

Table 1 presents the complete API of the libWater library.
The prefix wtr_ and the C language pointer syntax has been
removed from the table for readability reasons. Initialization
and selection of devices is done, respectively, by using the
wtr_init_devices and the wtr_get_device routines. Once
a device is created, it is possible to allocate data and execute
computation on it. In libWater, this is done through the use of
the buffer and the kernel concepts. These two objects are simi-
lar to their respective OpenCL versions, with the main differ-
ence that, during their creation, they are bound to a specific
device. For this reason no device must be specified for buffer
and kernel related functions. The principal kernel functions
are wtr_create_kernel and wtr_run_kernel. The former
receives as parameter a flag that specifies whether the name
input argument contains the kernel code or it is the name of a
file containing the OpenCL kernel. The latter is used for exe-
cuting a kernel in the previously bound device. The parame-
ters work_dim, global_work_size and local_work_size are
the same specified in the OpenCL clEnqueueNDRangeKernel.
The num_args parameter states the number of input argu-
ments accepted by the kernel. This parameter is followed by
a list of a variable number of pairs. Each pair consists of a
size (in bytes) and a pointer to the corresponding kernel argu-
ment. The first value of the pair distinguishes between buffers
– when is equal to 0 – or a valid address in the host memory.
The fourth concept in libWater is the event object. Most of
kernel and buffer functions have one or two parameters called
wait_evt and evt. The latter is an output argument which
is used by the invoked command to generate an event object.
If not specified, libWater assumes blocking semantics for the
routine. The former specifies the event object on which the

execution of the command depends. If not present, the com-
mand has no dependencies and thus it can be immediately
executed. Since there can be a dependency between several
commands, the wtr_merge_events function can be used to
merge multiple event objects into one.

The last major difference between libWater and the OpenCL
model is the fact that initialization and release of buffers and
kernels can be invoked using a non-blocking semantics. The
main reason for this is to increase the amount of operations
that the runtime system can overlap. In the next section we
explain how dependency information enforced by events are
then exploited by libWater’s runtime system.

4. THE LIBWATER DISTRIBUTED
RUNTIME SYSTEM

While the main focus of the programming interface of lib-
Water is on simplicity and productivity, the underlying run-
time system aims at low resource utilization and high scal-
ability. Calls to libWater routines are forwarded to a dis-
tributed runtime system which is responsible for dispatch-
ing the OpenCL commands to the addressed devices and for
transparently and efficiently moving data across the cluster
nodes. The libWater distributed runtime is written in C++ and
internally uses several paradigms, such as pthreads, OpenMP
and MPI for parallelization.

4.1 Runtime System Architecture
Figure 1 shows the organization of the libWater distributed

runtime system. The host code, which directly interacts with
libWater’s routines, runs on the so called root node, which
by default is the cluster node with rank 0. This thread will
be referred to as the host thread. In the background, a sec-
ond thread, i.e. the scheduler thread, is allocated to execute
an instance of the WTRScheduler. On the remaining cluster
nodes, a single scheduler thread is spawned independently of
the number of available devices (only one MPI process is al-
located per node). This thread executes an instance of the
WTRScheduler which represents the backbone of libWater’s
distributed runtime system.

Each WTRScheduler continuously dequeues wtr_commands
from the local command queue. wtr_commands in the system
are generated in two ways, either by (i) libWater’s routines
(step 1), or (ii) by delegation from the root scheduler (step 3).
Calls to the libWater’s interface are converted into command
descriptors (i.e. command design pattern) and immediately
enqueued into the root node local command queue (step 1)
of Figure 1. Since all wtr_commands are generated by the
root node itself, we refer to its queue as the runtime global
command queue.
wtr_commands are either wrappers for OpenCL commands

or data transfer jobs (i.e. send_job or recv_job) which are
generated by the library routines whenever the device ad-
dressed by a read or write buffer operation is located in a
remote (i.e. rank , 0) compute node. The descriptor of a
wtr_command is self-contained since it carries all the informa-
tion necessary for its execution . To be portable across cluster
nodes, OpenCL objects such as kernels, buffers and events are
identified, within the wtr_command object, by a unique ID.
The root scheduler continuously fetches the wtr_commands
from the global command queue, decodes its content and
– depending on the targeted device – dispatches the com-
mand to the correct node. When the wtr_command addresses
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Figure 1: libWater’s distributed runtime system architecture.

one of the local OpenCL devices, the corresponding OpenCL
command is created and enqueued into the device command
queue (step 2). When a remote OpenCL device is addressed,
an MPI message is generated – serializing the content of the
wtr_command descriptor – and dispatched to the cluster node
hosting the requested device. The WTRScheduler of the tar-
get node then de-serializes the wtr_command and, instead
of immediately executing it, enqueues the wtr_command in-
stance into the local command queue (step 3). The same
WTRScheduler is then responsible to dispatch the correspond-
ing OpenCL command into one of its local device queues
(step 2).

The heartbeat of the WTRScheduler is an advanced event
system which allows the management of an entire compute
node – hosting multiple OpenCL devices – using only a sin-
gle application thread. Indeed, because one instance of the
WTRScheduler runs on every cluster node, trying to keep the
resource usage as low as possible is of paramount importance
in order to avoid wasting CPU cycles which can be used to
run an OpenCL kernel. Different from related work, e.g. the
SnuCL runtime system [20], which exclusively reserves an
entire cluster node and a physical CPU core in each com-
pute node only for scheduling purposes, our system does
not exclusively reserve any user resources for scheduling.
Furthermore, using a single thread, for both executing local
wtr_commands and for performing scheduling decisions, re-
duces the amount of synchronization since accesses to event
and the command queues do not need to be synchronized.

Relying on a single thread can however easily become a
performance bottleneck. An interesting example is the inter-
action with MPI routines. By default many MPI implemen-
tations implement blocking behaviour with a spin-lock mech-
anism in order to minimize latency. This means for example
that a blocking receive, waiting for a message from the com-
munication channel, continuously checks for incoming data
usually saturating the cycles of a CPU core. In an environ-
ment like ours, where CPU cores may be used to run OpenCL
kernels, this behaviour must be avoided. Our solution is to
avoid in every event handler routine any call to blocking
MPI or OpenCL routines and always use the non-blocking
semantics. The main idea is the creation of periodic events,

handled by the event system using a priority queue based on
timestamps, to check for the completion of pending opera-
tions. For OpenCL routines, we exploit the OpenCL event
system and the associated callback mechanism. In this way,
the WTRScheduler is able to dispatch several commands on
the OpenCL devices, or MPI data transfers, which although
being issued sequentially (by the single flow of the execu-
tion) are concurrently executed by the available resources
(i.e. OpenCL devices and the network controller). The same
event-based technique utilized to manage multiple OpenCL
devices in a single node is also exploited on the large scale
across cluster nodes.

4.2 Event-based Command Scheduling
As already explained in the previous section, libWater puts

a strong emphasis on events. Following the semantics of
OpenCL, dependency information enforced by programmers
are used to select wtr_commands, which can be safely en-
queued into one of the cluster nodes. libWater provides
an event object, i.e. wtr_event. Internally, wtr_events are
mapped either to an OpenCLcl_eventobject, or to awtr_com-
mand identifier which is automatically generated for each
wtr_command enqueued into the system. These dependencies
allow the runtime system to organize enqueued wtr_com-
mands into a DAG.

A complete multi-device libWater-based host program is
shown in Listing 1. This code initializes all the available
NVidia GPU devices. It then selects two devices belong-
ing respectively to node rank 0 and 1, with a global mem-
ory larger than 1024MB. For each device the code in List-
ing 1 does the following: create a kernel (i.e. kern, in line
10) and a read/write buffer (i.e. buff, line 11). Then the
contents from the host memory is written into the device
buffer by the wtr_write_buffer command (line 12) and the
wtr_run_kernel command is issued providing buff as an
input argument (lines 14-16). The computed result is then
retrieved by the wtr_read_buffer command (line 17) which
moves data from the device memory back to the host memory.
From the runtime system point of view, the execution of the
previous code generates a set of dependent commands struc-
tured as the DAG depicted in Figure 2. The DAG G(V,E) is
composed of vertices, i.e. wtr_commands ∈ V, interconnected



1 wtr_init_devices(
2 "SELECT ALL WHERE (type = gpu AND vendor = nvidia)");

3 wtr_event* evts[2];

4 for (int i=0; i<2; ++i) {
5 size_t offset=size/2*i;

6 wtr_device* dev = wtr_get_device("SELECT POS 1 FROM

NODE %d WHERE global_memory > 1024MB",i);

7 assert(dev != NULL && "Device does not exist!");

8 wtr_event* e[8];

9 wtr_init_event_array(7,e);

10 wtr_kernel* kern = wtr_create_kernel(dev,"kernel.cl","fun"
, "", WTR_SOURCE , e+0);

11 wtr_buffer* buff = wtr_create_buffer(dev,
WTR_MEM_READ_WRITE , size/2, e+1);

12 wtr_write_buffer(buff, size/2, ptr+offset, e+1, e+2);
13 e[7] = wtr_merge_events(2, e+0, e+2);

14 wtr_run_kernel(kern,1,(size_t[1]){size/2},NULL,e+7,e+3,2,
15 0, buff,

16 sizeof(size_t), &offset);
17 wtr_read_buffer(buff, size/2, ptr+offset, e+3, e+4);
18 wtr_release_buffer(buff, e+4, e+5);
19 wtr_release_kernel(kern, e+3, e+6);
20 evts[i] = wtr_merge_events(2, e+5, e+6);

21 wtr_release_event_array(8, e);

22 }

23 /* Blocks until buffers and kernels are released */

24 wtr_wait_for_events(2, evts+0, evts+1);
25 wtr_release_event_array(2, evts);

Listing 1: A complete multi-device program example using
libWater’s routines

through directed edges (a, b) ∈ E | a, b ∈ V, or events, which
guarantee that the correct order of execution, and therefore
the semantics of the input program, is maintained. The set
of dependencies associated with a command c ∈ V is de-
fined as c.deps = {v ∈ V | (v, c) ∈ E}. It is worth mentioning
that not all libWater library routines generate a corresponding
wtr_command. For example, creation, merging and release of
events are only meaningful in the root node, therefore there is
no need for serializing them. In Figure 2, each wtr_command
carries a descriptor in the form x|y where x represents the
node rank, c.node_id, on which the targeted device, c.dev_id,
is hosted and y is the unique command identifier assigned by
the runtime system. As already mentioned, for buffer opera-
tions on remote devices (i.e. device on node 1) explicit data
transfers are automatically inserted by the libWater library
(e.g. wtr_commands 10 and 14).

Events determine when a wtr_command can be scheduled
for execution. The scheduler uses a just-in-time strategy to
select the next wtr_command from the local command queue.
The logic works as follows: enqueued wtr_commands are an-
alyzed in a FIFO fashion and, for each ready command, the
scheduler checks whether dependencies – explicitly specified
by event objects – are satisfied. If a command has no depen-
dencies, it can be executed. Since the host program generates
all the commands solely on the root node, scheduling is done
at this node. However, a centralized scheduler on a sin-
gle node is not an effective strategy since it limits command
throughput and thus the overall scalability of the system.

In order to solve this problem, we rely on the fact that
the OpenCL runtime system already has the capability of
scheduling commands and handling dependencies by using
events. It is worth noting that in OpenCL this mechanism
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Figure 2: DAG of wtr_commands generated during the exe-
cution of the code snippet in Listing 1.

is limited since events cannot be used to perform command
synchronization across different contexts. libWater unifies
event handling through WTRScheduler instances which man-
age inter-context synchronization and offload intra-context
synchronization to the OpenCL driver.

We implemented a three-level hierarchal scheduling approach
as described in Algorithm 1. At the top level, the root
node of the libWater runtime system pro-actively schedules
wtr_commands from the global queue to the targeted clus-
ter nodes. cmd, fetched from the command queue, is sent
to the target node (i.e. cmd.node_id) only if each of its de-
pendent commands (i.e. the set cmd.deps) are to be exe-
cuted on the same remote node (lines 6–9). The second level
scheduling is local to each node (lines 11–14). The sched-
uler checks whether cmd only depends on wtr_commands ad-
dressing the same OpenCL device. In such case, the com-
mand is enqueued into the corresponding device queue (i.e.
dev.dev_id) and dependencies are mapped to local OpenCL
events. Alternatively, if a wtr_command C1 depends on a sec-
ond wtr_command C2, scheduled in another context (of the
same node), the local WTRScheduler ensures that C1 is not
enqueued into the OpenCL device queue before C2 is com-
pleted. The third-level scheduling is implemented by the
OpenCL runtime system itself which is responsible of man-
aging single device queues. If cmd cannot be scheduled, due
to unsatisfied dependencies, then it is pushed back in the
command queue.

Command dependencies are automatically updated when
a wtr_command c completes. Locally, a command completion
event is generated. The associated callback function is depicted
in Algorithm 2. The function removes, for every command
in the local queue, any dependence on c. Additionally, nodes
notify the root scheduler with a message (lines 5–7) triggering



Algorithm 1 The WTR_Scheduler’s algorithm
1: cmd_queue . Local FIFO wtr_command queue
2: my_rank .MPI process rank
3: while true do
4: cmd← cmd_queue.pop();
5: if cmd.node_id , my_rank then
6: if ∀ d ∈ cmd.deps | d.node_id = cmd.node_id then
7: send(cmd, cmd.node_id,SCHED) . Delegates cmd to node
8: continue
9: end if

10: else
11: if ∀ d ∈ cmd.deps | d.dev_id = cmd.dev_id then
12: issue(cmd.cl_cmd, cmd.deps) . Delegates to corresp. dev.
13: continue
14: end if
15: end if
16: cmd_queue.push(cmd) . Failed to schedule event due to deps.
17: end while

Algorithm 2 Update wtr_command dependencies
1: function callback_cmd_completion(c)
2: for cmd in cmd_queue do
3: cmd.deps.remove(c) . Removes c from the dependencies
4: end for
5: if my_rank , 0 then
6: send(c, 0,DONE) . Notifies the root node of c completion
7: end if
8: end function

a similar completion event internally at node 0. In such a way,
commands in the global queue waiting for the completion of c
can be scheduled – depending on the targeted device – either
to a local device or to a remote node.

This multi-level scheduling allows the runtime system to
hide the costs of the scheduling, as well as data transfers,
with the actual work being done by the devices in the back-
ground. The main idea is to use non-blocking semantics
when OpenCL commands are scheduled in the correspond-
ing devices. In this way, the WTRScheduler can continuously
dispatch commands to other devices or move data from and
to the root node. In the example in Figure 2, commands
0|1 and 0|2 can be executed in parallel. Events at addresses
e + 0 and e + 1 are handled by the root WTRScheduler since
the OpenCL standard does not allow non-blocking seman-
tics for these operations. The remaining commands (i.e. 0|3,
0|4 and 0|5) are inserted asynchronously into the OpenCL
device queue of node 0, upon completion of commands 0|1
and 0|2. Events e+2 and e+3 are therefore handled directly
by the OpenCL runtime system. Following the same logic,
wtr_commands addressing the second OpenCL device (i.e. 1|∗)
are sent to the node with rank 1. The blocking function
wtr_wait_for_events stops the execution of the host until
the release operations on both nodes have completed.

5. THE DYNAMIC COLLECTIVE REPLACE-
MENT (DCR) OPTIMIZATION

The underlying architecture of the libWater runtime system
and the emphasis on events, promoted by its interface, en-
ables several runtime optimizations which are transparent to
the user. This capability is a direct consequence of adhering
to the OpenCL queuing semantics. Indeed, while commands
are being enqueued into the system, a command DAG (as
shown in Figure 2) is internally created. Since OpenCL issues
commands to the appropriate device only when an explicit
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Figure 3: Dynamic collective communication pattern re-
placement (DCR) optimization.

flush is invoked by the programmer, the runtime system can
analyze large portions of the application DAG and optimize
it for improving scalability.

An optimization which has been implemented in the lib-
Water runtime system is the dynamic detection and replace-
ment of collective communication patterns (DCR). Whenever
the addressed device is not hosted in the root node, a call to
wtr_write_buffer and wtr_read_buffer respectively gen-
erates an MPI send and receive operation. When an OpenCL
application is distributed among all available devices, input
buffers are usually either split or replicated between compute
nodes. This parallelization strategy is common and it results
in a DAG containing several send/receive transfer operations
for every device of the cluster. An example is depicted in
Figure 3 which represents a realistic DAG resulting from the
splitting of an input and output buffer among a set of N
OpenCL devices.

Point-to-point data transfers performed by the libWater run-
time system imply an increased latency when compared with
the native MPI send or receive routines. The reason for that is
the polling mechanism implemented by the libWater runtime
system – mainly employed to save node resources – which
replaces the spin-lock mechanism commonly used by MPI li-
braries. Additionally, the number of required data transfers is
directly proportional to the cluster nodes (and thus devices).
This results in a large number of commands being dispatched
by the runtime system and consecutively negatively impacts
the overall scalability. MPI offers a large set of communica-
tion patterns called collective operations [25]. These routines
are highly efficient since nearly all modern supercomputers
and high-performance networks provide specialized hard-
ware support for collective operations [23]. Additionally, the
implementation of such collective operations employs dy-
namic runtime tuning techniques which choose, among a set
of semantically equivalent algorithms, which best fit the un-
derlying network topology and architecture [9, 27, 28].



Algorithm 3 DCR pattern recognition
1: function replace_collective_patterns(G(V,E), root)
2: for t in BFS(G(V,E), root) do
3: if t.type ∈ {SendJob,RecvJob} then
4: jobs[t.node_id].append(t) . Orders transfer jobs
5: end if
6: end for
7: for i← 0 to min({ jobs[k].length : ∀ k | 0 ≤ k < N}) do
8: pattern← 0
9: for j← 1 to N do

10: if jobs[ j][i].type , jobs[ j − 1][i].type then break
11: if jobs[ j][i].buf = jobs[ j − 1][i].buf∧
12: jobs[ j][i].size = jobs[ j − 1][i].size then
13: if pattern = 2 then break
14: pattern← 1 . Sequence recognized as a broadcast
15: end if
16: if jobs[ j][i].buf = jobs[ j − 1][i].buf + jobs[ j − 1][i].size then
17: if pattern = 1 then break
18: pattern← 2 . Sequence can be either scatter or gather
19: end if
20: end for
21: if j , N ∨ pattern = 0 then continue
22: if pattern = 1 ∧ jobs[0][i].type = SendJob then
23: replace_with_broadcast( jobs, i)
24: else
25: if jobs[0][i].type = SendJob then replace_with_scatter( jobs, i)
26: else replace_with_gather( jobs, i)
27: end if
28: end for
29: end function

Related work analyzed the problem of automatic detection
of collective patterns from a set of point-to-point communi-
cations. This technique is common in MPI performance tools
which are capable of detecting such patterns via post-mortem
analysis of program traces [21]. The general problem of col-
lective communication pattern detection is NP-hard, how-
ever, under particular restrictions the problem can be solved
in polynomial time. A more recent work [15] proposed a fast
solution, with a complexity of O(n log n), which makes the
approach more suitable for runtime systems.

The goal of our DCR optimization algorithm is to analyze
the command DAG isolating point-to-point data transfers
and detect whether a subset of those resembles one of the
collective patterns supported by MPI. This is possible since
– if the application is carefully written using events for com-
mand synchronization – the command DAG will be available
to the runtime system scheduler before the first blocking com-
mand is invoked (e.g. wtr_wait_for_event(s)). Since data
transfers in our environment have all the same root (the node
0), the analysis for patterns is simplified. The pattern recog-
nition is presented in Algorithm 3. The command DAG is
traversed once in breadth-first order (lines 1–6), transfer com-
mands are collected into N separate lists (i.e. variable jobs),
one per device. On the extracted N lists, pattern analysis
is performed (lines 7–28). The check is done by consider-
ing elements having the same position within the transfer
job lists. Furthermore, the check is simplified by the fact
that every send and receive wtr_command carries information
of the buffer location (buf ) and the amount of bytes being
transfered (size). The pattern analysis starts by taking the
first transfer wtr_command from the N lists and by checking
against a supported pattern, i.e. broadcast, scatter or gather.
For instance, in a broadcast N send operations are expected
where ∀ i | 0 ≤ i < N − 1, buf i = buf i+1 ∨ sizei = sizei+1. If

Vienna Supercomputing Cluster 2 (VSC2)

Max # of nodes 1.314
Processors 2 x AMD Opteron 6132 HE

Cores per node 2 x 8
Clock Frequency 2.2 GHz

Memory per Node 32 GB DDR3
Interconnection Infiniband 4x QDR

Open MPI version 1.6.1
OpenCL version AMD APP 2.6

Table 2: The VSC2 experimental target architecture.

the check fails, the transfer jobs are tested against a scatter or
gather pattern ∀ i | 0 ≤ i < N − 1, buf i + sizei = buf i+1.

Once a pattern is recognized, single point-to-point transfers
are removed from the command DAG and replaced by the
corresponding collective communication operation (lines 23,
25 and 26). A visual example of this optimization is depicted
in Figure 3, where multiple send operations are collapsed into
a single scatter operation and correspondingly, receives are
rewritten as a gather operation. By doing so, dependencies
between successive commands are updated in order to keep
the semantics of the input program unchanged.

Since collective operations must involve all the processes
in a communicator, the current implementation of the DCR
optimization works when all the initialized devices partici-
pate in the computation. Therefore, the analysis is limited to
regular applications which must involve all OpenCL devices
in data transfers. This is important to keep the pattern recog-
nition algorithm simple and fast, since this optimization is
applied during runtime. In the future, we plan to improve
this mechanism by extending the pattern recognition also to
sub-groups of devices.

6. EXPERIMENTAL EVALUATION
We used libWater to encode 6 computational kernels, some

of them taken from various OpenCL benchmarking suites
(i.e. AMD and IBM), and studied their scalability. In four
of them, the kernels were optimized for local memory, i.e.
PerlinNoise (from IBM), NBody (from AMD), Floyd and
kNN manually written by us. For the remaining two codes,
MatrixMul and LinReg we used a naive implementation un-
optimized for what concern local memory. The table shows,
for each kernel, the number of input and output buffers used
by the kernel. We define a buffer as splittable when its content
can be distributed among the devices. The nature of a buffer
is strictly related to the algorithm being implemented within
the OpenCL kernel, and thus the application. Non splittable
buffers are always replicated on every device.

For the strong scalability analysis we used a real produc-
tion cluster, the Vienna Supercomputing Cluster 2 (VSC2) [3],
ranked 162th in the Top500 list [4], whose details are sum-
marized in Table 2. A second study was conducted to test
the suitability of libWater to exploit the computational ca-
pabilities of a heterogeneous cluster configuration. For this
purpose we used a cluster, composed of 3 compute nodes
(i.e. mc1, mc2 and mc3), custom made with off-the-shelf GPU
accelerators. The hardware details are depicted in Table 3.

The six applications utilized for our study are listed in Ta-
ble 4. We started from a pure OpenCL implementation and



mc1 mc2 mc3

CPUs
2 x AMD

Opteron(tm)
6168 @1.9GHz

2 x AMD
Opteron(tm)

6168 @1.9GHz

2 x Intel(R)
Xeon(R) X5650

@2.67GHz

GPUs
2 x ATI

Radeon HD
5870

1 x NVIDIA
GTX 480

1 x NVIDIA
GTX 460

RAM 24 GB DDR3

Interconn. Infiniband QDR

Open MPI 1.6.1

OpenCL AMD APP 2.6 CUDA 5.0 CUDA 5.0

Table 3: The architecture of mc1, mc2 and mc3 heterogeneous
compute nodes.

rewrote them using libWater. In Table 4, we show the reduc-
tion, in terms of lines of code, achieved when the application
is written using our library. It is worth mentioning that while
the original OpenCL applications were single device codes,
the libWater based implementation is instead multi-device
code. On average, we were able to reduce the lines of the
host code by approximately a factor of 2 due to the higher
level abstractions provided by libWater.

6.1 Homogeneous CPU cluster
The applications shown in Table 4 were executed on the

VSC2 homogeneous CPU cluster. We were able to access
up to 64 nodes with a total of 1024 CPU cores. Since the 2
AMD CPUs which are hosted per node are considered by the
OpenCL driver as a single device, the speedup was computed
based on the number of compute nodes (and thus OpenCL
devices) instead of single CPU cores. The workload partition-
ing is implemented, for each test case, by assigning to each
OpenCL device an equal amount of work.

The scalability tests were performed in the following way:
the original OpenCL version of the applications were exe-
cuted in a single node and their execution times used as a
reference measurement. libWater was then used for node
numbers ranging from 2 to 64. The main differences between
the original version of the application codes and the one writ-
ten using libWater are mainly in the host code. The kernel
code was slightly modified only to forward the offset value
used by the workload partitioning (as shown in Listing 1).
We computed the ideal scaling for each application using
the reference execution time and dividing it by the number of
nodes. We conducted experiments with libWater by using two
different settings: the first, named baseline, uses the runtime
system without dynamic optimizations enabled; the second,
DCR, uses the collective pattern replacement mechanism as
described in Section 5. The results of our experiments are
depicted in Figure 4.

For each of the six applications, we show the execution
time (in seconds) for up to 64 devices and the correspond-
ing speedup with respect to a single node. Overall, we ob-
serve that our approach scales almost linearly, especially for
those codes using few input/output buffers. PerlinNoise,
Figure 4(a), is an example of those, since it has no dependen-
cies on input buffers and the data produced by the kernel is
distributed between the devices. For such code, the baseline
configuration of our runtime system achieves a speedup of
53 for 64 nodes, and thus an efficiency of 83%. When the
number and size of the input/output buffers increases, the

efficiency of our system decreases. The worst case is rep-
resented by the LinReg application, Figure 4(f), which stops
scaling after 32 nodes. This kernel has 4 input buffers, 2 of
them are not splittable (because of dependencies within the
kernel code) and therefore must be replicated on every node.
The remaining 2 input and output buffers are instead split-
table. For such code we have an immediate decrease (75% on
two nodes) of the efficiency. This is because the kernel execu-
tion is delayed due to the fact that several wtr_commands are
executed (and transfered to the target nodes) to create and
initialize the input/output buffers. However this delay is a
constant and system efficiency remains almost unvaried up
to 16 nodes. On 32 and 64 nodes the efficiency of the baseline
runtime system starts decreasing significantly.

This problem is largely addressed by the dynamic collec-
tive pattern replacement, i.e. DCR, optimization which was
introduced in Section 5. This optimization reduces the load
on the scheduler since it replaces several single transfer jobs
with one collective operation. In LinReg this optimization
improves the scalability of the system by a factor of 2 achiev-
ing an efficiency of 55%. A small effect of this optimiza-
tion can be observed for smaller node configurations be-
cause collective operations are optimized for a large num-
ber of nodes. An interesting result is the effect of the DCR
optimization on the PerlinNoise test case. In such a case,
the DCR optimization fails to improve performance over the
baseline. The reason is that collective operations are block-
ing while point-to-point communications in the runtime sys-
tem are non-blocking thereby allowing overlapping of mul-
tiple transfers. The synchronization costs introduced by the
gather operation is therefore not properly compensated by
the amount of exchanged data. We believe that this prob-
lem can be eliminated by using non-blocking collective routines
which have been introduced in the latest MPI standard [25]
and will soon be available in mainstream MPI libraries. Ad-
ditionally, since this optimization is done dynamically, and
therefore the amount of data being transfered is known by
the scheduler, heuristics can be integrated to decide when
such optimization should be applied.

On average, libWater achieves an efficiency of 80% on 32
nodes and 64% when 64 nodes are used. Without the DCR
optimization the system has an efficiency of 47% on 64 nodes.
This means that the DCR optimization improves the system
efficiency by 17% on 64 nodes and we expect this value to
increase proportionally with the number of nodes.

6.2 Heterogeneous GPU cluster
Since OpenCL allows access to heterogeneous devices we

conducted a second experiment which demonstrates libWa-
ter on a heterogeneous GPU cluster as described in Table 3. In
order to run applications on such environment, the input code
was rewritten so that the workload distribution was control-
lable via command line arguments. It is worth mentioning
that workload partitioning for heterogeneous architectures is
an active research problem [13, 22, 17, 14]. However, this as-
pect is completely orthogonal to our library and for the sake
of this experiment, we derive workload partitionings in an
empirical way.

We ran the MatrixMul and the Floyd test cases using dif-
ferent combinations of devices. For each device configura-
tion, several different workload splittings were tested and
the fastest one was chosen. The partitionings and their cor-
responding execution times, are shown in Table 5. For exam-



Application OpenCL
LOC

libWater
LOC Input size Input/Output

buffers (splittable) Short Description

PerlinNoise 412 301 20K x 20K 0(0) / 1(1) Gradient noise generator
Nbody 450 324 600K bodies 2(0) / 2(2) N-body simulation
kNN 234 101 ref : 8M, query: 80K 2(1) / 2(1) k-nearest neighbor
Floyd 222 113 Vertices 8K, Adjacency matrix 64K 1(0 ) /1(0) Floyd-Warshall

MatrixMul 219 104 7K x 7K (A = B = C) 2(1) / 1(1) Matrix Multiplication
LinReg 298 149 1000K 4(2) / 1(1) Linear regression

Table 4: Application codes used for libWater evaluation.
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Figure 4: Strong scaling of libWater on the VSC2

ple, in MatrixMul, configuration C1 assigns all the workload
to the first GPU of node mc1. The execution time for this
configuration is 63.3 seconds. By equally splitting the work-
load between the two accelerators on the same node, i.e. C2,
we double the performance. Between the GPUs, the NVidia
GTX 480 is the fastest device requiring only 29.4 seconds to
complete the work. However libWater can be used to im-
prove the execution time even further. The overall execution

time can be reduced by 50% by using the workload partition
as described by configuration C8 which assigns 22% to each
GPU in mc1, 44% to the NVidia GTX 480 and the remaining
12% to the NVidia GTX 460 accelerator. For Floyd results
are different. Its execution on the GTX 480 is 8 times faster
than the AMD GPU and 4 times better than the GTX 460.
However, performance can still be improved by splitting the
workload between the two NVidia accelerators by assigning



Device Workload Partition Configurations
M
a
t
r
i
x
M
u
l

C1 C2 C3 C4 C5 C6 C7 C8

mc1-GPU1 100% 50% - - 35% 25% - 22%
mc1-GPU2 - 50% - - - 25% - 22%
mc2-GPU3 - - 100% - 65% 50% 75% 44%
mc3-GPU4 - - - 100% - - 25% 12%
Exec. time
(in secs.) 63.3 32.5 29.4 68.4 23.7 19.0 26.6 17.3

F
l
o
y
d

mc1-GPU1 100% 50% - - 2% 1% 0.5%
mc1-GPU2 - 50% - - - 1% - 0.5%
mc2-GPU3 - - 100% - 98% 98% 99% 98%
mc3-GPU4 - - - 100% - - 1% 1%
Exec. time
(in secs.) 101.6 51.3 14.9 58.3 17.3 16.0 13.1 16.3

Table 5: Performance of MatrixMul and Floyd on the het-
erogeneous cluster for different combination of GPUs.

99% of the work to the faster GTX 480 and 1% to the GTX
460. This experiment demonstrates, despite higher latencies
caused by additional data transfers between host and device
memory, non-blocking communication yields good scalabil-
ity behaviour even for heterogeneous architectures. How-
ever, scalability on such environments depends on several
factors and we plan to investigate this issues in future work.

7. RELATED WORK
In recent years, heterogeneous systems have received a

great amount of attention from the research community. Al-
though several projects have been recently proposed to facil-
itate the programming of clusters with heterogeneous nodes
[20, 8, 6, 5, 18, 12, 26, 31], none of them combines support for
high performance inter-node data transfer, support for a wide
number of different devices and a simplified programming
model. Our work takes into account all this aspects through
the development of the libWater library.

Kim et al. [20] proposed the SnuCL framework that extends
the original OpenCL semantics to heterogeneous cluster en-
vironments. Their work is closely related to ours. SnuCL
relies on the OpenCL language with few extensions to di-
rectly support collective patterns of MPI. Indeed, in SnuCL
is the programmer responsibility to take care of the efficient
data transfers between nodes. In that sense, end users of
the SnuCL platform need to have an understanding of MPI
collective calls semantics in order to be able to write scal-
able programs. This deeply differs from our system where
such optimizations are transparently applied by the libWa-
ter runtime system. Furthermore, SnuCL poses a limit to the
number of devices which can be addressed by their runtime
system, i.e. NVidia accelerators and CPUs. Differently, lib-
Water can interface with every OpenCL driver making the list
of supported platforms virtually unlimited.

Also other works have investigated the problem of ex-
tending the OpenCL semantics to access a cluster of nodes.
The Many GPUs Package (MGP) [8] is a library and runtime
system that using the MOSIX VCL layer enables unmodi-
fied OpenCL applications to be executed on clusters. Hybrid
OpenCL [6] is based on the FOXC OpenCL runtime and ex-
tends it with a network layer that allows the access to devices
in a distributed system. The clOpenCL [5] platform comprises
a wrapper library and a set of user-level daemons. Every call
to an OpenCL primitive is intercepted by the wrapper which
redirects its execution to a specific daemon at a cluster node
or to the local runtime. dOpenCL [18] extends the OpenCL

standard, such that arbitrary compute devices installed on
any node of a distributed system can be used together within
a single application. Distributed OpenCL [12] is a framework
that allows the distribution of computing processes to many
resources connected via network using JSON RPC as com-
munication layer. OpenCL Remote [26] is a framework which
extends both OpenCL’s platform model and memory model
with a network client-server paradigm. Virtual OpenCL [31],
based on the OpenCL programming model, exposes physical
GPUs as decoupled virtual resources that can be transpar-
ently managed independent of the application execution.

While the objectives of these approaches are similar to ours,
none of them provides an abstraction layer to reduce the
complexity associated with the OpenCL development and,
furthermore, they show a very limited scalability in clusters
of 4 to 8 compute nodes. In particular, none of them employs
dynamic communication optimizations as we do.

Besides OpenCL-based approaches, also CUDA solutions
have been proposed to simplify distributed systems pro-
gramming. CUDASA [29] is an extension of the CUDA
programming language which extends parallelism to multi-
GPU systems and GPU-cluster environments. rCUDA [11]
is a distributed implementation of the CUDA API that en-
ables shared remote GPGPU in HPC clusters. cudaMPI [24]
is a message passing library for distributed-memory GPU
clusters that extends the MPI interface to work with data
stored on the GPU using the CUDA programming interface.
All of these approaches are limited to devices that support
CUDA, i.e. NVidia GPU accelerators, and therefore they can-
not be used to address heterogeneous systems which com-
bines CPUs and accelerators from different vendors.

Other projects have investigated how to simplify the O-
penCL programming interface. Sun et. al [30], proposed a
task queueing extension for OpenCL that provides a high-
level API based on the concepts of work pools and work
units. Intel CLU [16], OCL-MLA [1] and SimpleOpencl [2] are
lightweight API designed to help programmers to rapidly
prototype heterogeneous programs. Beside the simplified
interface, libWater provides fine-grained control over device
selection (i.e. DQL) and an improved device synchronization
based on events.

A more sophisticated approach was proposed in [10]. Omp-
Ss relies on compiler technologies to generate host and ker-
nel code from a sequential program annotated with pragmas.
The runtime of OmpSs internally uses a DAG similar to ours
with the scope of scheduling. However, to our knowledge,
the DAG is not dynamically optimized like in our approach.
Additionally, by relying on the user for kernel code, libWa-
ter allows for fine-grained performance tuning.

8. CONCLUSIONS
In this paper, we introduced libWater, a library for simplify-

ing the programming of heterogeneous distributed systems.
The proposed interface demonstrates that raising the ab-

straction level of the OpenCL programming model is possi-
ble without losing control over performance. We showed,
with an example, how a multi-device distributed host pro-
gram can be written using approximately 25 lines of code.
By defining a simple, but powerful, device query language
(DQL), libWater simplifies the management and discovery of a
large number of OpenCL devices. The simple API makes the
library a perfect target for automatic code generation tools,
thus it can be easily integrated in compilers.



libWater’s interface is tightly bound to a lightweight dis-
tributed runtime system which is designed from scratch for
high scalability and low resource usage. Because of the non-
blocking semantics promoted by the library interface, com-
mands can be organized by the runtime system into a DAG
to be used for dynamic analysis and optimizations.

We studied the strong scalability on a homogeneous pro-
duction cluster using up to 64 nodes, for which our system
achieves an efficiency of 64%. We also demonstrated the ef-
fectiveness of how libWater addresses highly heterogeneous
configurations by running two test cases on a cluster system
composed by 4 different GPU accelerators.

libWater will be released as an open-source project with the
goal of becoming a research platform to investigate perfor-
mance aspects of heterogeneous and distributed HPC archi-
tectures.
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