
SYnergy: Fine-grained Energy-Efficient Heterogeneous
Computing for Scalable Energy Saving

Kaijie Fan
kfan@unisa.it

TU Berlin, Germany
University of Salerno, Italy

Marco D’Antonio
University of Salerno, Italy

Lorenzo Carpentieri
University of Salerno, Italy

Biagio Cosenza
University of Salerno, Italy

Federico Ficarelli
CINECA, Italy

Daniele Cesarini
CINECA, Italy

ABSTRACT

Energy-efficient computing uses power management techniques
such as frequency scaling to save energy. Implementing energy-
efficient techniques on large-scale computing systems is challeng-
ing for several reasons. While most modern architectures, including
GPUs, are capable of frequency scaling, these features are often not
available on large systems. In addition, achieving higher energy sav-
ings requires precise energy tuning because not only applications
but also different kernels can have different energy characteris-
tics. We propose SYnergy, a novel energy-efficient approach that
spans languages, compilers, runtimes, and job schedulers to achieve
unprecedented fine-grained energy savings on large-scale heteroge-
neous clusters. SYnergy defines an extension to the SYCL program-
ming model that allows programmers to define a specific energy
goal for each kernel. For example, a kernel can aim to minimize
well-known energy metrics such as EDP and ED2P or to achieve
predefined energy-performance tradeoffs, such as the best perfor-
mance with 25% energy savings. Through compiler integration and
a machine learning model, each kernel is statically optimized for
the specific target. On large computing systems, a SLURM plug-
in allows SYnergy to run on all available devices in the cluster,
providing scalable energy savings. The methodology is inherently
portable and has been evaluated on both NVIDIA and AMD GPUs.
Experimental results show unprecedented improvements in energy
and energy-related metrics on real-world applications, as well as
scalable energy savings on a 64-GPU cluster.

CCS CONCEPTS

• Computer systems organization → Heterogeneous (hybrid)

systems; • Hardware→ Power estimation and optimization.

KEYWORDS

Frequency scaling, Heterogeneous Computing, Energy efficiency,
Modeling
ACM Reference Format:

Kaijie Fan, Marco D’Antonio, Lorenzo Carpentieri, Biagio Cosenza, Federico
Ficarelli, and Daniele Cesarini. 2023. SYnergy: Fine-grained Energy-Efficient
Heterogeneous Computing for Scalable Energy Saving. In The International

SC ’23, November 12–17, 2023, Denver, CO, USA
© 2023 Copyright held by the owner/author(s).
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in The International
Conference for High Performance Computing, Networking, Storage and Analysis (SC ’23),
November 12–17, 2023, Denver, CO, USA, https://doi.org/10.1145/3581784.3607055.

Conference for High Performance Computing, Networking, Storage and Anal-
ysis (SC ’23), November 12–17, 2023, Denver, CO, USA. ACM, New York, NY,
USA, 12 pages. https://doi.org/10.1145/3581784.3607055

1 INTRODUCTION

Energy-efficient computing has been identified as a major tech-
nology challenge to optimize the performance of exascale appli-
cations under power or energy constraints [18]. Rising electricity
costs, power constraints, and the diminishing efficiency benefits of
Moore’s Law have further exacerbated this challenge and increased
the need for energy-efficient technology.

One of the most effective technologies for energy-efficient com-
puting is Dynamic Voltage and Frequency Scaling (DVFS), which
improves energy efficiency by changing the core or memory fre-
quency until it reaches a voltage and frequency point that is close to
the threshold voltage, after which the energy efficiency decreases
again [23].

Bringing the benefits of frequency scaling to today’s large het-
erogeneous systems is challenging. First, while modern GPUs now
broadly support frequency scaling through hardware vendor li-
braries such as Intel’s RAPL [20], NVIDIA’s NVML [32], and AMD’s
ROCm SMI [2], to the best of our knowledge, there is no portable
way to support frequency scaling between CPUs, GPUs, and ac-
celerators that would enable portable power-efficient approaches.
The second challenge comes from the need for fine-grained tuning
approaches. Related works [8, 15] have shown how different ker-
nels can have a strong energy characterization, therefore leading
e.g., to a different energy-optimal frequency. While this has largely
been studied on micro-benchmarks and single kernels, large appli-
cations cannot simply set the same frequency for all kernels if they
want higher energy savings. In terms of energy modeling, it is also
important to provide the user with a simple and portable interface
that facilitates the selection of the best energy-efficient solution
without exposing technical details. Unfortunately, frequency scal-
ing is usually not available to users on large production systems
due to potential technical problems: for example, one user can set a
frequency too low and the next user will unknowingly experience
a slowdown.

All of these arguments call for an energy-efficient approach that
does not only focus on a single aspect but rather addresses the
energy holistically across the software stack, including the pro-
gramming model, compiler, library, and job scheduler. To this end,
we propose SYnergy a novel software approach to fulfill energy-
efficient computing in large-scale computing systems by integrating

https://doi.org/10.1145/3581784.3607055
https://doi.org/10.1145/3581784.3607055

SC ’23, November 12–17, 2023, Denver, CO, USA Kaijie Fan, Marco D’Antonio, Lorenzo Carpentieri, Biagio Cosenza, Federico Ficarelli, and Daniele Cesarini

a language interface with extensions to compilers, energy models,
and job schedulers for scalable energy savings. In summary, the
contributions of this paper are as follows:

• A new portable energy interface based on SYCL that allows
programmers to define energy targets on a per-kernel rather
than per-application basis. The interface enables portable
energy profiling and frequency scaling on a wide range of
heterogeneous hardware.

• A set of energy targets, which expands traditional energy-
delay metrics (EDP and ED2P) with new ones that better
express energy tradeoffs, such as the best performing config-
uration while saving 25% energy (ES_25), or the most energy-
efficient while losing only 25% of performance (PL_25).

• A fine-grained energy methodology consisting of a set of
energy models integrated into a SYCL compilation toolchain,
that enables per-kernel tuning for specific energy targets.

• An energy plugin for SLURM, which enables GPU frequency
scaling on HPC production systems.

• An experimental evaluation including energy-saving results
on 23 benchmarks on different heterogeneous nodes equipped
withAMDMI100 andNVIDIAV100, and a large-scale energy-
scalability evaluation on two real-world applications on the
Marconi-100 GPU cluster at CINECA.

The rest of this paper is organized as follows. Section 2 presents
background and motivations. Section 3 provides an overview of our
approach. Section 4, 5 and 6 introduce, respectively, the energy in-
terface, the energy metrics and the modeling methodology. Section
7 describes the energy-aware job scheduler. Section 8 presents the
experimental evaluation of our approach. Section 9 and 10 conclude
the paper with related work and final conclusion.

2 MOTIVATION

2.1 Energy Interface

Modern processors provide an interface to enable a number of
power/energy capabilities offered by the hardware. Typically, we
are interested in two functionalities: an interface that allows us
to report on either the current power draw or the accumulated
energy consumption of a defined power domain; the ability to dy-
namically scale the frequency of a core or memory. The vendor’s
power/energy interfaces, however, are very different from each
other, and there is no common interface to provide portable com-
mon functionality. For example, Intel CPU provides the Running
Average Power Limit (RAPL) interface [20], which is capable of
very accurate cumulative energy consumption estimation at differ-
ent levels, including package, core, uncore, and DRAM. Recently,
GPUs have begun to provide power/energy interfaces. The NVIDIA
Management Library (NVML) reports on the current board power
draw and power limits, as well as enables frequency scaling. While
current high-end NVIDIA GPUs only enable frequency change for
the core frequency, a few models also enable to select one out of
four different memory frequencies, e.g., NVIDIA Titan X. Similar
interfaces are also supported by AMD and Intel through ROCm
SMI [2] and Level Zero [21], respectively.

Figure 1 shows the available core and memory frequencies for
three major GPUs from NVIDIA and AMD. For NVIDIA V100, the
memory frequency is set to 877 MHz, and we have a total of 196

200 400 600 800 1000 1200 1400
Core frequency (MHz)

800

900

1000

1100

1200

1300

M
em

or
y

fre
qu

en
cy

 (M
Hz

)

NVIDIA V100
NVIDIA V100 default frequency
NVIDIA A100
NVIDIA A100 default frequency
AMD MI100

Figure 1: Available frequencies for NVIDIA V100, A100 and

AMD M100.

core frequency configurations, from 135 to 1530 MHz. For NVIDIA
A100, the memory frequency is set to 1215 MHz, and we have a
total of 81 core frequency configurations, from 210 to 1410 MHz.
On AMD MI100, the memory frequency is set to 1200 MHz, and
we have a total of 16 core configurations, from 300 to 1502 MHz.
Differently from NVIDIA, AMD MI100 does not provide a default
frequency configuration, as the frequency is automatically adjusted
based on the workload. Unfortunately, GPU power interfaces are
rather limited when compared to their CPU counterparts. They
have limited support for power/energy domains, e.g., frequency
scaling cannot be applied to a specific compute unit or streaming
multiprocessor. In addition, GPU power reads are asynchronous and,
one should be aware of potential delays, especially when measuring
the energy of small kernel executions. Not only is there no portable
interface for power and energy, but current programming models do
not allow for integration with existing power capabilities.

2.2 Fine-grained Energy Tuning

It is important to understand that energy consumption is largely
dependent on the kernel. Figure 2 shows two kernels, a linear
regression, and a median filter, executed on an NVIDIA V100 GPU.
The graph shows the essential multi-objective nature of the energy
problem, where the x-axis represents the speedup and the y-axis
is the normalized per-task energy consumption. The baseline is
the default configuration (1312 MHz core and 877 MHz memory
frequency). The red line is the Pareto front.

0.2 0.4 0.6 0.8 1.0 1.2
Speedup

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

No
rm

al
ize

d
En

er
gy

default configuration
Pareto Front

600

800

1000

1200

1400

Co
re

 Fr
eq

ue
nc

y

(a) Linear Regression

0.2 0.4 0.6 0.8 1.0 1.2
Speedup

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

No
rm

al
ize

d
En

er
gy

default configuration
Pareto Front

200

400

600

800

1000

1200

1400

Co
re

 Fr
eq

ue
nc

y

(b) Median Filter

Figure 2: Two kernels with different energy characterization.

The two kernels have very different energy characterization:
Linear Regression (Figure 2a) has overall high energy con-
sumption, there are no configurations that allow saving more than
10% of the energy and, in general, low core-frequency configu-
rations are very inefficient in performance. On the other hand,

SYnergy: Fine-grained Energy-Efficient Heterogeneous Computing for Scalable Energy Saving SC ’23, November 12–17, 2023, Denver, CO, USA

Application Execution

Target models

synergy::queue q{gpu_selector};
q.submit(MIN_EDP,[&](handler&h){
…
h.parallel_for(n,kernel1);
…

});

q.submit(ES_25,[&](handler&h){
…
h.parallel_for(m,kernel2);
…

});

Feature extraction

SYCL code with synergy queue and per-
kernel energy target

SLURM energy plugin

min EDP

energy
saving 25%

Compilation
SYCL / SYCL+MPI

target frequency SYCL + MPI

prologue

epilogue

Per-kernel feature extraction By-target model inference Job scheduler support for
energy-aware jobs

feature vectorkernel IR

kernel IR feature vector

Figure 3: SYnergy Approach Overview.

Median Filter (Figure 2b) has the potential for more than 20%
energy savings, and low-frequency configurations do not lose too
much performance. Energy characterization depends on many fac-
tors, for example, computationally bounded kernels are very sensi-
tive to changes in the core frequency. Overall, it is clear that setting
the same frequency for all the kernels in an application, i.e., coarse-
grained tuning is not optimal; ideally, for greater energy savings, we
prefer a fine-grained solution that explores per-kernel energy tuning.

2.3 Energy Support by Job Scheduler

Modern job schedulers provide modules to deal with power manage-
ment. SLURM [43] provides an integrated power management sys-
tem for energy accounting [9] and power capping [11], which takes
the configured power cap for the system and distributes it across
the nodes controlled by SLURM. SLURM lowers the power caps on
nodes that are consuming less than their cap and redistributes that
power to other nodes, with configurable power thresholds. SLURM
also provides a power-saving mechanism for powering down idle
nodes. Custom SLURM plugins provide energy accounting for spe-
cific infrastructure such as Cray’s per-node power and energy data
from the head node [40], and IBM’s systems director active energy
manager [24], which provides power and energy measurements on
each node. However, a scheduler can only operate at the job level,
because it can only see the job as a whole and cannot implement
per-kernel specific energy/power techniques. In other words, a
job scheduler can only implement coarse-grained energy/power tech-
niques; implementing fine-grained techniques necessarily requires
providing an energy interface to the users.

Unfortunately, SLURM installations on large-scale clusters typi-
cally do not provide advanced energy capabilities to the users. The
main reason for this limitation is due to technical problems that
may arise if, for example, any user is allowed to change the fre-
quency: a user may potentially set the core frequency to a too-low
core frequency, and unintentionally affect the next users of the
same resources, e.g., the GPU.

3 SYNERGY DESIGN

SYnergy is a software layer for general-purpose, cross-stack, energy-
efficient computing on large-scale HPC clusters. It takes advantage
of the frequency-scaling capabilities of modern hardware, espe-
cially GPUs, and exposes them to the user through a high-level,
easy-to-use interface.

3.1 Overview

SYnergy is built around three basic components: a SYCL-based API,
a compilation framework integrated with a set of target models,
and a SLURM plugin. Figure 3 illustrates the relationships between
these components.

A SYnergy application is either a SYCL or SYCL+MPI applica-
tion that uses the SYnergy API. SYnergy’s interface is basically a
wrapper of the sycl::queue, providing additional features to
allow frequency scaling and energy/power measurements at the
kernel level. In particular, each kernel is annotated with a specific
energy target.

At compile time, the SYCL compilation toolchain is extended
with an additional feature extraction pass that statically extracts
a feature vector from each kernel, which is later fed into a target
machine learning model that computes the target frequency. Model
inference depends on the energy target provided by the user, and
the predicted frequency configuration is made available to the SYCL
library at runtime.

After compilation, a SYnergy application is already energy-
aware and instrumented with the frequency settings specified by
the per-kernel user annotation. In the case of an MPI+SYCL appli-
cation, to enable the frequency scaling and measurement capabil-
ities on a cluster, a SLURM job scheduler plugin extends the job
execution policy with a specific prologue and epilogue, enabling
energy-efficient computing on all devices in the job.

3.2 Deployment

The current version of SYnergy has been installed on the Marconi-
100 cluster at CINECA. However, the whole approach can be easily
deployed on a new cluster with very little effort.

Since the programming interface is based on SYCL and is com-
pletely transparent to the hardware, a program written in SYnergy
can easily be executed on another machine without any changes.

Installing SYnergy on a new system requires two steps. First, the
energy models must be built for each target device. For this purpose,
each code in the micro-benchmark is executed with different core
frequency configurations. The execution data, i.e., per-task energy
and runtime, represent the training set on which the energy-target
models are built. Details regarding the modeling can be found in
Section 6, while details about the deployment are available in the
AD/AE Appendix. The second step is related to the availability
of energy capabilities for per-device power/energy readings and
frequency scaling. The SYnergy approach provides a SLURMplugin
that must be installed in order to give any user such capabilities.

SC ’23, November 12–17, 2023, Denver, CO, USA Kaijie Fan, Marco D’Antonio, Lorenzo Carpentieri, Biagio Cosenza, Federico Ficarelli, and Daniele Cesarini

The current implementation of the SYnergy’s SLURM plugin has a
prologue and epilogue logic to support NVIDIA GPUs, but it can
be easily extended to other vendors. See Section 7 for details.

4 SYNERGY PROGRAMMING INTERFACE

The SYnergy energy-aware SYCL API is one of the building blocks
upon which our system is built. The API, inspired by the SYCL
extension Celerity [37, 39], provides a common interface that allows
energy profiling and frequency scaling on devices from different
vendors, without requiring developers to work with vendor-specific
libraries. The API is released as a header-only library that can be
integrated into an existing C++ building environment. This paper
uses the interface bindings for NVIDIA and AMD GPUs, which are
mapped into the NVML [32] and ROCm SMI [2], respectively.

4.1 SYCL

SYCL [14] is a programming model for heterogeneous computing
that builds on modern C++. While SYCL follows the execution and
memory model of OpenCL [12, 13], implementations can have a
non-OpenCL mapping, e.g., the Open SYCL CUDA backend [1].
SYCL supports single-source programming where both kernel and
host codes are stored in the same source file. In a SYCL program, the
kernel code to be executed on a device such as a GPU, is expressed
by theparallel_for function from the command group handler
object. The device on which the kernel code executes is represented
by a queue.

4.2 Profiling Interface

The main entry point for using the SYnergy interface is the syne-
rgy::queue class, which extends the standard SYCL queue with
energy capabilities. The SYnergy API provides coarse-grained and
fine-grained energy profiling capabilities that allow measuring,
respectively, the energy consumption of the whole device and the
energy consumption of each kernel executed in a SYCL application.

Listing 1 shows how the API can be used to query the energy
consumed by a kernel, i.e., a parallel_for and a device using
kernel_energy_consumption and device_energy_co-
nsumption functions, respectively. Since device computation is
asynchronous, we wait for the kernel to finish before querying
energy consumption.

1 synergy::queue q{gpu_selector_v};
2 buffer<float, 1> x_buf{x};
3 buffer<float, 1> y_buf{y};
4 buffer<float, 1> z_buf{z};
5 event e = q.submit([&](handler& h) {
6 accessor<float, 1, read> x_acc{x_buf, h};
7 accessor<float, 1, read> y_acc{y_buf, h};
8 accessor<float, 1, write> z_acc{z_buf, h};
9 float a{alpha};
10 h.parallel_for(range<1>{n}, [=](id<1> id) {
11 z_acc[id] = a * x_acc[id] + y_acc[id];
12 });
13 });
14 e.wait_and_throw();
15 double kernel_energy = q.kernel_energy_consumption(e);
16 double device_energy = q.device_energy_consumption();

Listing 1: Energy profiling with the SYnergy API

With the coarse-grained approach, the device energy consumption
is measured by sampling the instantaneous power in a time window
that begins when the SYnergy queue is built and ends when it is

destroyed. This feature is useful whereas an application is made
up of a mix of large and small kernels, the latter of which are not
easy to profile because of the short execution time as explained in
4.4. In order to enable fine-grained energy profiling the SYnergy
API leverages the SYCL event features that allow us to query the
execution status of a kernel (i.e. submitted, running, complete).
Using an asynchronous thread to poll the kernel status we sample
the power of a kernel until it is complete. In this way, we measure
only the kernel energy consumption rather than the entire device.

4.3 Frequency Scaling Interface

A SYnergy queue can be constructed as a conventional SYCL queue
or by manually defining the memory and core frequencies configu-
ration for the kernels that will be submitted to the queue. Listing 2
illustrates a SYnergy queue construction with a memory frequency
of 1215 MHz and a core frequency of 210 MHz.

1 synergy::queue q{1215, 210, gpu_selector_v};
2 ... // setup buffers
3 event e = q.submit([&](handler& h) {
4 ... // setup accessors
5 h.parallel_for(n, kernel);
6 });

Listing 2: SYnergy queue with target frequencies

For fine-grained frequency scaling, each kernel submitted to the
queue can be executed with a specified frequency configuration,
which is set just before the kernel starts.

When integrated into the whole SYnergy architecture, the API
can be used to specify an energy target (energy target metrics are
defined in Section 5): MIN_EDP, MIN_ED2P, ES_x, PL_x. Listing 3
shows this type of kernel submission. The API can be used without
these targets, potentially as a standalone API for any SYCL applica-
tion where frequency scaling and energy profiling are desired.

1 synergy::queue q{gpu_selector_v};
2 ... // setup buffers
3 q.submit(MIN_EDP, [&](handler& h) {
4 ... // setup accessors
5 h.parallel_for(n, kernel);
6 });

Listing 3: SYnergy kernel submitted with MIN_EDP target

Finally, all of these approaches can be mixed, allowing for multi-
ple queues with different target configurations, with the ability to
specify a target for each kernel submission, as shown in Listing 4.

1 synergy::queue low_freq{877, 810, gpu_selector_v};
2 synergy::queue default_freq{gpu_selector_v};
3 ... // setup buffers
4 low_freq.submit([&](handler& h) {
5 ... // setup accessors
6 h.parallel_for(n, kernel1);
7 });
8 default_freq.submit(877, 1530, [&](handler& h) {
9 ... // setup accessors
10 h.parallel_for(m, kernel2);
11 });

Listing 4: Queues and kernels with different targets

4.4 Limitations

Since SYCL has no way to execute instructions just before a kernel
starts executing on the device, SYnergy implements frequency

SYnergy: Fine-grained Energy-Efficient Heterogeneous Computing for Scalable Energy Saving SC ’23, November 12–17, 2023, Denver, CO, USA

scaling in the command group. However, as the kernel execution is
asynchronous, and the corresponding kernel may not have been
executed yet; therefore, we wait for the completion of the task.

The energy profiling and frequency scaling are also affected by
issues related to the underlying vendor-specific libraries. Accurate
fine-grained energy profiling is limited by the fact that the kernel
execution must be long enough in order to produce meaningful
results, due to the maximum sampling frequency supported by the
hardware, which needs around 15 ms long sampling intervals [5].

Our experiments have outlined that the frequency scaling using
the NVML library introduces an overhead that becomes significant
as the number of submitted kernels grows.

5 ENERGY METRICS

Our approach focuses on delivering energy-efficient configura-
tions without sacrificing performance. By trying to minimize en-
ergy consumption and maximize performance, we formulate a
multi-objective problem. While applying frequency scaling, en-
ergy consumption and performance are not strongly correlated,
which means that there is not a single optimal solution, but a set of
Pareto optimal dominant solutions.

Dealing with multi-objective problems and Pareto sets makes
the optimization process more complicated for users, who need to
understand the different tradeoffs at stake. To provide a high-level,
easy-to-use interface, it would be nice to provide a simple tuning
interface that returns the relevant Pareto optimal configuration to
the user. Scalar metrics are a solution to this problem.

5.1 Energy Delay Products

An example of a scalarmetric is the Energy-Delay Product (EDP) [19],
which was originally proposed to provide insight into some of the
basic trade-offs in low-power design. EDP is defined as the product
of energy consumed and the execution time: 𝐸𝐷𝑃 = 𝑒𝑡 . A variant
of EDP is the Energy-Delay Square Product (ED2P) metric, which
gives more importance to the execution time and is defined as
𝐸𝐷2𝑃 = 𝑒𝑡2. In the context of software optimization based on fre-
quency scaling, both EDP and ED2P metrics provide only limited
insight into the overall distribution of the Pareto optimal set.

Figure 4 shows energy and performance data for the Black-
Scholes benchmark. In Figure 4a and 4b we can see how EDP
and ED2P change as the core frequency increases. The blue and
green points represent the core frequency value that minimizes,
respectively, EDP and ED2P. As expected, ED2P is very close to the
configuration that delivers maximum performance at maximum
core frequency, and therefore should not be considered a tradeoff
metric. By looking at the entire distribution, we can see that there
are many Pareto optimal solutions between the minimum energy
point and the one with maximum performance. The EDP optimal
point lies in between, but users may be interested in finding more
tradeoffs in this interval.

5.2 Energy Saving Metric

To provide a better understanding of the tradeoff solutions that can
potentially be selected, we define a set of new metrics that aim to
provide easy-to-use and interpretable energy tradeoffs. In defining
a new metric, we start with two observations. First, the default core
frequency configuration is typically very close to the maximum

600 800 1000 1200 1400
Core Frequency

150

175

200

225

250

275

300

325

ED
P

[J⋅
s]

default configuration
min_edp configuration

(a) EDP

600 800 1000 1200 1400
Core Frequency

200

300

400

500

600

700

ED
2P

 [J
⋅s

2]

default configuration
min_ed2p configuration

(b) ED2P

0.2 0.4 0.6 0.8 1.0 1.2
Speedup

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

No
rm

al
ize

d
En

er
gy

default configuration
Pareto Front
min_edp configuration
min_ed2p configuration

200

400

600

800

1000

1200

1400

Co
re

 Fr
eq

ue
nc

y

(c) Speedup and normalized energy

Figure 4: Black-Scholes benchmark.

available frequency, which means that by default GPU drivers are
tuned for maximum performance. The second consideration is that
looking at the multi-objective distribution, interesting tradeoff so-
lutions lie in the interval between the core frequency that delivers
the minimum energy and the default one.

We define the energy savings metric 𝐸𝑆_𝑥 , the frequency con-
figuration that delivers the 𝑥% energy savings, in terms of the
potential savings using the default frequency as a baseline. For ex-
ample, 𝐸𝑆_100 is the frequency with the lowest power consumption.
Figure 5a shows the energy saving metric for the Black-Scholes
benchmark. The blue dotted lines represents, respectively, 𝐸𝑆_25,
𝐸𝑆_50 and 𝐸𝑆_75.

5.3 Performance Loss Metric

Another way to look at energy tradeoffs is to focus on performance
loss rather than energy savings. In this view, we define the perfor-
mance loss metric 𝑃𝐿_𝑥 as the frequency configuration that has a
𝑥% performance degradation, in terms of the potential performance
loss using the default frequency as a baseline. This metric operates
on the same interval as ES; however, it scales on the performance
values rather than the energy values. Figure 5b shows the perfor-
mance loss metric for the Black-Scholes benchmark. The orange
dotted lines represents, respectively, 𝑃𝐿_25, 𝑃𝐿_50 and 𝑃𝐿_75.

6 MODELING METHODOLOGY

One of SYnergy’s key design features is finding an optimal fre-
quency configuration to minimize execution time, energy consump-
tion, and energy-delay products, and furthermore, achieve the en-
ergy saving and performance loss metric. This process requires
modeling how the energy metrics (in Section 5) change with differ-
ent workload characterization and frequency scaling. Our proposed

SC ’23, November 12–17, 2023, Denver, CO, USA Kaijie Fan, Marco D’Antonio, Lorenzo Carpentieri, Biagio Cosenza, Federico Ficarelli, and Daniele Cesarini

0.2 0.4 0.6 0.8 1.0 1.2
Speedup

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

No
rm

al
ize

d
En

er
gy

default configuration
Pareto Front
Energy Saving 25%
Energy Saving 50%
Energy Saving 75%

200

400

600

800

1000

1200

1400

Co
re

 Fr
eq

ue
nc

y

(a) Energy Saving

0.2 0.4 0.6 0.8 1.0 1.2
Speedup

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

No
rm

al
ize

d
En

er
gy

default configuration
Pareto Front
Performance Loss 25%
Performance Loss 50%
Performance Loss 75%

200

400

600

800

1000

1200

1400

Co
re

 Fr
eq

ue
nc

y

(b) Performance Loss

Figure 5: Energy Metrics for Black-Scholes.

methodology is based on the typical two-phase modeling with su-
pervised learning: each metric model is built in the training phase;
later, when a new input workload is provided, a predicting phase
infers the optimal frequency configuration.

The description of the two phases is presented below.

6.1 Training Phase

The goal of the training phase is to build separate models for execu-
tion time, energy consumption, EDP, and ED2P. Figure 6 illustrate
the workflow for the training phase.

We first, instead of using existing benchmarks, construct a set
of micro-benchmarks and extract a set of static features of each
micro-benchmarks to build the training set ❶. Formally, any micro-
benchmark is represented by a static feature vector

®𝑘 = (𝑘𝑖𝑛𝑡_𝑎𝑑𝑑 , 𝑘𝑖𝑛𝑡_𝑚𝑢𝑙 , 𝑘𝑖𝑛𝑡_𝑑𝑖𝑣, 𝑘𝑖𝑛𝑡_𝑏𝑤 ,
𝑘𝑓 𝑙𝑜𝑎𝑡_𝑎𝑑𝑑 , 𝑘𝑓 𝑙𝑜𝑎𝑡_𝑚𝑢𝑙 , 𝑘𝑓 𝑙𝑜𝑎𝑡_𝑑𝑖𝑣, 𝑘𝑠 𝑓 ,
𝑘𝑔𝑙_𝑎𝑐𝑐𝑒𝑠𝑠 , 𝑘𝑙𝑜𝑐_𝑎𝑐𝑐𝑒𝑠𝑠)

where each element represents a specific instruction type. The
description of each feature is listed in Table 1.

Table 1: Static code features.

Feature Description
𝑘𝑖𝑛𝑡_𝑎𝑑𝑑 integer additions and subtractions
𝑘𝑖𝑛𝑡_𝑚𝑢𝑙 integer multiplications
𝑘𝑖𝑛𝑡_𝑑𝑖𝑣 integer divisions
𝑘𝑖𝑛𝑡_𝑏𝑤 integer bitwise operations
𝑘𝑓 𝑙𝑜𝑎𝑡_𝑎𝑑𝑑 floating point additions and subtractions
𝑘𝑓 𝑙𝑜𝑎𝑡_𝑚𝑢𝑙 floating point multiplications
𝑘𝑓 𝑙𝑜𝑎𝑡_𝑑𝑖𝑣 floating point divisions
𝑘𝑠 𝑓 special functions
𝑘𝑔𝑙_𝑎𝑐𝑐𝑒𝑠𝑠 global memory accesses
𝑘𝑙𝑜𝑐_𝑎𝑐𝑐𝑒𝑠𝑠 local memory accesses

Meanwhile, each micro-benchmark is executed with various
frequency configurations ❷ to obtain execution time (𝑡) and energy
consumption (𝑒) measurements and then calculate EDP (𝑒𝑑𝑝) and
ED2P (𝑒𝑑2𝑝). Frequency configurations, represented as a frequency
vector ®𝑓 , together with the different metric measurements are also
used to build the training set 𝑇 .

Once the training set𝑇 = (®𝑘, ®𝑓 , 𝑒, 𝑡, 𝑒𝑑𝑝, 𝑒𝑑2𝑝) is prepared, differ-
ent machine learningmethods are applied to build four single-target
models ❸ of execution time 𝐹𝑡 (®𝑘, ®𝑓), energy consumption 𝐹𝑒 (®𝑘, ®𝑓),
EDP 𝐹𝑒𝑑𝑝 (®𝑘, ®𝑓) and ED2P 𝐹𝑒𝑑2𝑝 (®𝑘, ®𝑓).

6.2 Prediction Phase

The final goal of the modeling workflow is to predict several fre-
quency configurations which bring optimal energy metrics sepa-
rately for a new workload. Figure 6 explains how our modeling
workflow is capable of predicting the optimal frequency setting for
a new input SYCL workload.

For the target of execution time, energy consumption, EDP, and
ED2P metric, we first extract the new static code features ❹ and
generate a feature vector ®𝑘′ of a new workload. Together with the
frequency configuration vector ®𝑓 , we build the prediction dataset
𝑃 = (®𝑘′, ®𝑓) to represent each new input SYCL workload. Combin-
ing the four single-target models obtained in the training phase
❺, the four metrics with different frequency configurations are
predicted: 𝑡 = 𝐹𝑡 (®𝑘′, ®𝑓), 𝑒 = 𝐹𝑒 (®𝑘′, ®𝑓), ˆ𝑒𝑑𝑝 = 𝐹𝑒𝑑𝑝 (®𝑘′, ®𝑓), and
ˆ𝑒𝑑2𝑝 = 𝐹𝑒𝑑2𝑝 (®𝑘′, ®𝑓).
Once we have the above four predictions, we can easily find

the frequency configuration 𝑓 by using a search algorithm ❻ for
different energy targets, e.g., MIN_EDP, ES_25 or PL_25, which is
able to be defined by users.

7 ENERGY-AWARE JOB SCHEDULER

To allow users to collect energy and power measurements and
programmatically set the operating frequencies of GPU boards for
this work, appropriate facilities had to be put in place. Given the
selected platform for running experiments [6], the GPU board ven-
dor provides interfaces for monitoring, profiling, and performance
bounds manipulation. NVML [32] is a C language programming
interface for monitoring and managing various device states within
NVIDIA data center class GPUs. It exposes through its APIs several
board management actions, e.g., initialization and cleanup, board
status queries, control, and events monitoring.

7.1 HPC Cluster Energy Monitoring Challenges

For system integrity reasons, all of the statechanging API calls are
normally restricted to the root user. It’s possible though, through
documented API calls, to allow unprivileged users to access some
otherwise privileged NVML calls with a setting that controls per-
missions on a per-GPU granularity. The active production status
of the Marconi100 HPC system poses additional challenges. In the
context of an HPC production machine, where the system performs
multiple jobs on the same nodes in an ordered fashion, low-level
control APIs of devices pose potential configuration hazards for the
nodes: via uncontrolled access to the devices, a user could easily
change performance states, lowering frequencies or capping the
power consumption, and potentially leaving these configurations
at the termination of a job. In this case, the next job allocated on the
node will run at the GPU performance state left by the previous job,
without the possibility of exploiting the maximum performance
that is usually granted by the system. In order to leave the node in
a consistent performance state at the end of a privileged job, we
decided to pursue an approach based on temporary privilege raising
by the SLURM [44] job scheduler, the infrastructure component is
responsible for managing the entirety of machine resources.

The approach can be outlined as follows. First, the user explicitly
requests privileged GPU access in a specific batch job submitted to

SYnergy: Fine-grained Energy-Efficient Heterogeneous Computing for Scalable Energy Saving SC ’23, November 12–17, 2023, Denver, CO, USA

Training
New code

execution
with different
core frequencies

1

2

…

n

Inference
Micro-benchmarks

per-kernel
model selection

per-kernel
target

frequencies

kernel
feature vectorssynergy::queue

q{gpu_selector};
q.submit(MIN_EDP,
[&](handler&h){
…

h.parallel_for(n,kernel1
);
…
});

energy
feature

extraction

pe
rf

en
er

gy

ED
2 P

ED
P

1

2

…

n

models
training

ED2P

EDP

…

synergy::queue q{gpu_selector};
q.submit(MIN_EDP,[&](handler&h){
…
h.parallel_for(n,kernel1);
…
});
q.submit(ES_25,[&](handler&h){
…
h.parallel_for(m,kernel2);
…
});

1

2

Figure 6: Machine learning based energy models

the scheduler. Then, the scheduler ensures that the job has requested
for exclusive allocation of nodes: this ensures that while the user
has temporary access to privileged interfaces, they cannot affect
the performance or infer details of other jobs running on the same
node. When the job starts and tasks are assigned, the SLURM plugin
ensures that privileges are elevated on the devices. When the job
ends, the same SLURM plugin removes the privileges granted to
the job’s user and restores the default performance bounds.

For each GPU installed on the system, there are three clock
frequency levels available for SM cores (while the GPU memory
frequency is fixed for HBM-based devices): application clock fre-
quency, the frequency that the GPU uses as a target when executing
instruction streams from both compute and shader kernels; min-
imum and maximum clock frequency, hard bounds that cannot
be overridden by application frequency in any way. These are set
by the root user only and privileges for these bounds cannot be
lowered.

For the purpose of this work, the API call that allows for applica-
tion clock frequency privilege lowering is nvmlDeviceSetAPI-
Restriction: the SLURM plugin developed here leverages this
API call to temporarily lower privilege requirements for jobs that
are both using nodes exclusively and request for a specific runtime
feature according to requirements defined according to CINECA’s
system administration team.

7.2 SLURM Plugin

The developed nvgpufreq plugin allows accessing the NVML
privileged clock settings by regular users when an exclusive job
run on a node marked with a specific tag, we used the Generic
RESources (GRES) of SLURM to tag nodes with these capabilities.
The plugin operates by intercepting the prologue and epilogue of
each job submitted to the cluster (via SLURM own extension hooks).

In the prologue hook, the plugin performs the following steps.
First, it retrieves the node info from the scheduler daemon (slurm-
ctld). If the plugin fails to do so, it terminates its execution. Then,
it checks if the node is tagged with the nvgpufreq GRES. If the
node is not tagged, the plugin terminates its execution. Another
check is performed if NVML shared object is available for dynamic
loading (via dlopen), otherwise, the plugin terminates its execu-
tion; it also checks if the job is tagged with nvgpufreq GRES (if
the job does not specify the aforementioned GRES, it terminates
its own execution) and if the job runs exclusively on the node (if
the node can be shared among multiple jobs the plugin terminates
its execution). If all of the above checks are successful, the actual

privilege requirements for application clock settings are lowered on
the GPU boards allocated to the specific job otherwise the plugin
terminates its execution without applying any configuration. When
the job terminates for any reason, the epilogue hook is run and the
plugin performs a full cleanup procedure restoring the node’s GPUs
at the maximum frequency and removing the privileged access.

The infrastructure, after configuration auditing, has been de-
ployed on the Marconi100 [6] system to allow the user base to run
large-scale measurement campaigns for any standard users.

8 EXPERIMENTAL EVALUATION

In this section, we first present the experimental setup that includes
the SYCL benchmarks and hardware platform. The evaluation con-
sists of an analysis of SYCL benchmark characterization, followed
by a prediction accuracy analysis of different ML algorithms. Fi-
nally, we analyze the energy scalability on a multi-node computing
system.

8.1 Experimental Setup

For the experimental evaluation of our approach, we rely on the In-
tel DPC++ [22] SYCL implementation. Since SYnergywraps vendor-
specific libraries to target different architectures we need NVML
on the nodes with an NVIDIA GPU and ROCm SMI on the AMD
nodes.

Single node. We conduct the evaluation on 23 applications from
the SYCL benchmark suite using two different nodes: one equipped
with an AMD EPYC 7313 processor, and an AMD MI100 GPU; the
other node is equipped with a Power9 processor and four NVIDIA
V100 GPUs.

Multi-node. Themulti-node experiment is carried out on theMar-
coni100, an accelerated cluster based on IBM Power9 processors
and NVIDIA V100 GPUs. The nodes are connected by a Mellanox
Infiniband EDR with a DragonFly+ topology. Tests have been per-
formed with up to 16 nodes (4 GPUs per node) using two real-world
SYCL + MPI applications: CloverLeaf [17] and MiniWeather [31].

8.2 SYCL Benchmark Characterization Analysis

This section analyzes the SYCL benchmarks characterization in
terms of speedup, normalized energy consumption, and Pareto
Front on both NVIDIA V100 and AMD MI100 GPUs.

In Figure 7 and Figure 8, we show a selection of four signifi-
cant benchmarks taken from the 23 SYCL benchmarks executed on
NVIDIA V100 and AMD MI100, separately. For each benchmark,
we present speedup (x-axis) and normalized energy (y-axis) with

SC ’23, November 12–17, 2023, Denver, CO, USA Kaijie Fan, Marco D’Antonio, Lorenzo Carpentieri, Biagio Cosenza, Federico Ficarelli, and Daniele Cesarini

0.2 0.4 0.6 0.8 1.0 1.2
Speedup

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

No
rm

al
ize

d
En

er
gy

default configuration
Pareto Front

200

400

600

800

1000

1200

1400

Co
re

 Fr
eq

ue
nc

y

(a) Matrix Multiplication

0.2 0.4 0.6 0.8 1.0 1.2
Speedup

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

No
rm

al
ize

d
En

er
gy

default configuration
Pareto Front

200

400

600

800

1000

1200

1400

Co
re

 Fr
eq

ue
nc

y

(b) Sobel 3

0.2 0.4 0.6 0.8 1.0 1.2
Speedup

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

No
rm

al
ize

d
En

er
gy

default configuration
Pareto Front

200

400

600

800

1000

1200

1400

Co
re

 Fr
eq

ue
nc

y

(c) Mersenne Twister

0.2 0.4 0.6 0.8 1.0 1.2
Speedup

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

No
rm

al
ize

d
En

er
gy

default configuration
Pareto Front

600

800

1000

1200

1400

Co
re

 Fr
eq

ue
nc

y

(d) FTLE

Figure 7: Multi-objective characterization of the selected benchmarks from the SYCL benchmark suite on NVIDIA V100.

0.2 0.4 0.6 0.8 1.0 1.2
Speedup

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

No
rm

al
ize

d
En

er
gy

default configuration
Pareto Front

400

600

800

1000

1200

1400

Co
re

 Fr
eq

ue
nc

y

(a) Matrix Mutliplication

0.2 0.4 0.6 0.8 1.0 1.2
Speedup

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

No
rm

al
ize

d
En

er
gy

default configuration
Pareto Front

400

600

800

1000

1200

1400

Co
re

 Fr
eq

ue
nc

y

(b) Sobel 3

0.2 0.4 0.6 0.8 1.0 1.2
Speedup

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

No
rm

al
ize

d
En

er
gy

default configuration
Pareto Front

400

600

800

1000

1200

1400

Co
re

 Fr
eq

ue
nc

y

(c) Mersenne Twister

0.2 0.4 0.6 0.8 1.0 1.2
Speedup

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

No
rm

al
ize

d
En

er
gy

default configuration
Pareto Front

400

600

800

1000

1200

1400

Co
re

 Fr
eq

ue
nc

y

(d) FTLE

Figure 8: Multi-objective characterization of the selected benchmarks from the SYCL benchmark suite on AMD MI100.

different frequency configurations; the reference baseline (black
cross point) for both corresponds to the energy and performance
value of the default frequency configuration. Based on the speedup
and normalized energy profiling, we derive the Pareto Front (red
line).

Speedup. In terms of experiment on NVIDIA V100, Sobel3
(Figure 7b) shows a high variance with respect to the core frequen-
cies lying in the Pareto Front: speedup goes from 0.73 up to 1.15.
At the other extreme, Matrix Multiplication (Figure 7a)
shows very little speedup difference while increasing the core fre-
quency lying in the Pareto Front: speedup only goes from 0.95 to
1.01, which means there is less performance improvement space in
Pareto Front. Other benchmarks behave within those two extreme
cases. However, for the experiment on AMD MI100 (Figure 8), the
default configuration always brings the best performance for all
the SYCL benchmarks.

Normalized energy. Pareto Front of Matrix Multiplica-
tion on NVIDIA V100 (Figure 7a) and AMD MI100 (Figure 8a)
show a larger slope than other benchmarks. In otherwords,Matrix
Multiplication tested onNVIDIAV100 saves 33% energywith
only 5% performance loss compared with the default configuration.
Sobel3 could also save 30% energy but with 27% performance loss.
In general, we find that the default configuration on NVIDIA V100 is
not the optimal choice, and it is even not a Pareto-optimal solution
in some cases. There exists more space to find performance-energy
tradeoffs on NVIDIA V100.

8.3 Prediction Accuracy Analysis

In our work, one main goal is to build models accurately predicting
frequency configuration according to the user-defined objectives,
e.g., MAX_PERF, MIN_EDP, ES_x, or PL_x. In this section, we
discuss the prediction accuracy of different ML algorithms for our

energy metrics and select the best ML algorithm to predict the
optimal frequency configuration of the two real-world applications.

The tested ML regression algorithms include linear regression,
least absolute shrinkage and selection operator (Lasso), Random
Forest, and support vector machine regression with RBF kernel
(SVR_RBF). As our four modeling targets have different behavior
with frequency scaling, we use linear regression, Lasso, and Random
Forest algorithms to train the performance model, while using
Linear, Random Forest, and SVR_RBF to train energy, EDP, and
ED2P models.

To better analyze the prediction accuracy, we measure absolute
percentage error (APE), mean absolute percentage error (MAPE),
and root mean square error (RMSE) between predicted and actual
values. It is notable that the error metrics are not between the
predicted and actual objectives, e.g., performance or energy, but
between the predicted and actual optimal frequency. In fact, the ac-
tual value is one objective obtained from the training set according
to the actual optimal frequency. The predicted value is the same
objective obtained from the training set but corresponds to the
predicted optimal frequency.

Figure 9 shows the APE results of frequency predictions for each
SYCL benchmark using different ML algorithms. Each subfigure
represents the error of predicted optimal frequency achieving the
user-defined energy objectives. In a few cases, especially in Figure
9a, some of the APE results are zero which represents the predicted
frequency is the same as the actual optimal frequency.

Table 2 lists the RMSE and MAPE results of predicted frequency
targeting the user-defined objectives. From Figure 9 and Table 2,
we can find that for modeling performance, ED2P, and performance
loss (PL_x) metrics, Linear regression performs better, while using
the Random Forest algorithm has a better prediction of energy, EDP
and energy saving (ES_x) metrics.

SYnergy: Fine-grained Energy-Efficient Heterogeneous Computing for Scalable Energy Saving SC ’23, November 12–17, 2023, Denver, CO, USA

BC BS BB Ft
le

G-
m

ea
n

Km
ea

ns
_fp

32
Km

ea
ns

_fp
64 Kn
n

LR
_fp

32
LR

_fp
64

Ma
t_m

ul
Ma

t_T MF M
T

MD
Nb

od
y

SP
_fp

32
Si

ne
wa

ve
So

be
l

Ve
c_

Ad
d_

fp
32

Ve
c_

Ad
d_

fp
64

Ve
c_

Ad
d_

in
t3

2
Ve

c_
Ad

d_
in

t6
4

0.0

0.5

1.0

1.5

2.0

2.5

Ab
so

lu
te

 P
er

ce
nt

ag
e

Er
ro

r [
%

] Linear Lasso RandomForest

(a) MAX_PERF: frequency prediction error

BC BS BB Ft
le

G-
m

ea
n

Km
ea

ns
_fp

32
Km

ea
ns

_fp
64 Kn
n

LR
_fp

32
LR

_fp
64

Ma
t_m

ul
Ma

t_T MF M
T

MD
Nb

od
y

SP
_fp

32
Si

ne
wa

ve
So

be
l

Ve
c_

Ad
d_

fp
32

Ve
c_

Ad
d_

fp
64

Ve
c_

Ad
d_

in
t3

2
Ve

c_
Ad

d_
in

t6
4

0

5

10

15

20

25

30

Ab
so

lu
te

 P
er

ce
nt

ag
e

Er
ro

r [
%

] RandomForest SVR_RBF

(b) MIN_ENERGY: frequency prediction error

BC BS BB Ft
le

G-
m

ea
n

Km
ea

ns
_fp

32
Km

ea
ns

_fp
64 Kn
n

LR
_fp

32
LR

_fp
64

Ma
t_m

ul
Ma

t_T MF M
T

MD
Nb

od
y

SP
_fp

32
Si

ne
wa

ve
So

be
l

Ve
c_

Ad
d_

fp
32

Ve
c_

Ad
d_

fp
64

Ve
c_

Ad
d_

in
t3

2
Ve

c_
Ad

d_
in

t6
4

0

5

10

15

20

25

30

Ab
so

lu
te

 P
er

ce
nt

ag
e

Er
ro

r [
%

] RandomForest SVR_RBF

(c) MIN_EDP: frequency prediction error

BC BS BB Ft
le

G-
m

ea
n

Km
ea

ns
_fp

32
Km

ea
ns

_fp
64 Kn
n

LR
_fp

32
LR

_fp
64

Ma
t_m

ul
Ma

t_T MF M
T

MD
Nb

od
y

SP
_fp

32
Si

ne
wa

ve
So

be
l

Ve
c_

Ad
d_

fp
32

Ve
c_

Ad
d_

fp
64

Ve
c_

Ad
d_

in
t3

2
Ve

c_
Ad

d_
in

t6
4

0

5

10

15

20

25

30

Ab
so

lu
te

 P
er

ce
nt

ag
e

Er
ro

r [
%

] Linear RandomForest SVR_RBF

(d) MIN_ED2P: frequency prediction error

Figure 9: Frequency prediction error for various benchmarks using different ML algorithms.

Table 2: Error analysis of each objective by using different ML algorithms.

Linear Lasso RandomForest SVR

Objective RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE Best

MAX_PERF 0.0014 0.001 0.0014 0.0012 0.0107 0.0072 - - Linear
MIN_ENERGY - - - - 3.29 0.066 5.65 0.071 RandomForest
MIN_EDP - - - - 6.06 0.104 7.42 0.130 RandomForest
MIN_ED2P 4.67 0.056 - - 5.58 0.099 5.26 0.092 Linear

ES_25 - - - - 1.95 0.029 2.98 0.04 RandomForest
ES_50 - - - - 2.87 0.040 3.24 0.043 RandomForest
ES_75 - - - - 5.17 0.061 4.21 0.043 RandomForest
PL_25 0.0391 0.0443 0.0391 0.0443 0.0519 0.047 - - Linear
PL_50 0.0596 0.0686 0.0596 0.0686 0.0771 0.0759 - - Linear
PL_75 0.1246 0.0986 0.1246 0.0986 0.1239 0.0986 - - Linear

8.4 Energy Scalability on Multiple Nodes

We validate our methodology on large-scale clusters by presenting
an energy scaling characterization of the two real-world applica-
tions CloverLeaf and MiniWeather. CloverLeaf is an application
that solves Euler’s equations of compressible fluid dynamics in two
spatial dimensions. MiniWeather simulates weather-like flows, it
uses the YAKL [30] library for launching kernel, in order to pro-
vide portability across different programming models. We integrate
both CloverLeaf and MiniWeather existent SYCL versions in SYn-
ergy to apply the fine-grained frequency scaling. Figure 10a and
Figure 10b show the energy scaling of the two applications up to
64 NVIDIA V100 GPUs using a weak scaling approach. For both
applications, performance scalability is limited by GPU memory
constraints that affect MPI applications. The performance scaling
behavior of CloverLeaf is in line with previous scaling analysis on
the application [28].

We present time on the x-axis and energy on the y-axis. Each
point in the plot corresponds to a version of the application in which
a frequency configuration for each kernel is selected according to
one of the metrics defined in Section 5. The reference baseline is
represented by a cross and corresponds to the energy and time
value of the default frequency configuration for all kernels. The
energy consumption regards only the GPU devices, while the exe-
cution time captured by the applications includes computation and
communication.

Regarding the EDP metric, both applications show an energy
behavior that is similar to the default frequency. The results shown
in the single-node characterization analysis are also confirmed
in the large-scale environment. In fact, the ES_x and PL_x targets
allow us to explore other Pareto-optimal solutions, providing energy
improvements and performance gains as we can see from ES_50
and PL_50.

SC ’23, November 12–17, 2023, Denver, CO, USA Kaijie Fan, Marco D’Antonio, Lorenzo Carpentieri, Biagio Cosenza, Federico Ficarelli, and Daniele Cesarini

700 800 900 1000 1100
Time [s]

0

200

400

600

800

1000

En
er

gy
 [k

J]

ES_50
PL_50
DEFAULT
MIN_EDP
MIN_ED2P

4 GPUs
8 GPUs
16 GPUs
32 GPUs
64 GPUs

(a) CloverLeaf

200 250 300 350 400 450 500 550 600
Time [s]

0

200

400

600

800

En
er

gy
 [k

J]

ES_50
PL_50
DEFAULT
MIN_EDP
MIN_ED2P

4 GPUs
8 GPUs
16 GPUs
32 GPUs
64 GPUs

(b) MiniWeather

Figure 10: Real-world applications energy scaling.

Overall, ES_50 and PL_50 achieve good energy savings, allowing
an energy save of around 20% in the CloverLeaf application and up
to 30% in the MiniWeather application.

9 RELATEDWORK

The significant growth in computing ability of large computing clus-
ters and supercomputers is clearly accompanied by a huge increase
in energy consumption. Hence, power and energy constrains have
become more and more crucial. A significant amount of research
has been done for improving the energy efficiency issue.

DVFS-based technique. DVFS, as one of the most widely used
strategies for improving energy efficiency, has been investigated
by numerous studies. Some focused on the different performance-
energy metrics, including performance, energy or energy-delay-
product [4, 15, 26, 33, 41], while others used Pareto Front to find
Pareto-optimal solutions for achieving performance-energy trade-
offs [7, 8, 29, 47]. Among them, Sourouri et al. [38] presented an
energy-conserving methodology, which combines the strengths of
fine-grained autotuning with DVFS in a real-world HPC application
but only on a single compute node. These approaches, however,
are limited to CPUs or GPUs. Even though there is some relevant
research based on DVFS on heterogeneous architectures, the DVFS
technology is actually implemented separately. There are still gaps
in DVFS portability between CPUs, NVIDIA GPUs, AMD GPUs,
and other accelerators.

Scheduler. The latest research demonstrated the importance of
scheduling, including workload distribution and resource allocation,
as a key decision variable in energy efficiency optimization both on
homogeneous multicore CPU clusters and heterogeneous systems.
Examples include workload distribution prediction to achieve op-
timal energy and performance [25, 27], job scheduler to manage
power constraints [3, 10, 35, 36, 42]. Besides, Power capping alloca-
tion is becoming essential for keeping large-scale systems within a
fixed power constraint and has become a major concern for HPC
operating systems, especially the future exascale supercomputers.
Zhang et al. [45, 46] presented PowerShift and PoDD, which are
dynamic, hierarchical, distributed power management system for
coupled applications in large-scale systems, to determine optimal
power and performance tradeoffs. Ramesh et al. [34] modeled the
impact of dynamic power capping schemes on progress for a set of
online HPC applications. Hao et al. [16] combined the powercap
with uncore frequency scaling and proposed a machine learning
modeling to predict the Pareto-optimal powercap configurations for
achieving trade-offs among performance and energy consumption.

Table 3 compares the capability of several related works and
SYnergy. By comparison, our proposal SYnergy offers a novel soft-
ware approach for energy-efficient computing in heterogeneous
systems, integrating a language interface with extensions to com-
pilers, energy models, and job schedulers, fulfilling fine-grained
tuning for scalable energy savings. To the best of our knowledge,
our work is the first programming interface that allows program-
mers to annotate kernels with energy targets.

Table 3: Comparison against the state-of-the-art.

Sourouri et al. [38] Hao et al. [16] PoDD [46] SYnergy

Sc
op

e a real-world HPC ap-
plication

MPI and
OpenMP appli-
cations

coupled
applications

SYCL bench-
marks
and two
real-world
applications

A
pp

ro
ac
h

dynamically tune
core frequency,
uncore frequency,
and the number of
threads, exhaustive
search

powercap allo-
cation based
on ML

powercap,
dynamically
tune power
allocation by
classifying
applications
and online
model

language
support, com-
pilation with
per-kernel
target energy
model, job
scheduler
extension

G
ra
nu

la
rit
y fine-grained

(kernel)
fine-grained
(kernel)

coarse-
grained
(application)

fine-grained
(kernel)

G
PU × × × ✓

O
bj
ec
tiv

e

Energy, EDP, ED2P Pareto front 1/runtime EDP, ED2P,
ES_x, PL_x

10 CONCLUSION

This paper presents SYnergy, a novel approach for energy-efficient
computing that embraces programming model, compiler and job
scheduler for energy scalability on large-scale production clusters.

SYnergy makes three major breakthroughs: a SYCL-based en-
ergy interface that extends sycl::queue with energy capabilities,
allowing programmers to specify per-kernel energy targets; a com-
pilation and modeling approach that automatically predicts the
energy-performance tradeoff based on user-defined targets; a SLURM
scheduler plugin that enables energy features on large clusters.

The SYnergy approach has been experimentally evaluated on
NVIDIA V100 and AMD MI100, on a collection of 23 benchmarks.
A large-scale experimental evaluation has also been performed on
the Marconi100 cluster, showing scalable energy savings with up
to 64 GPUs. The SYnergy approach and newly defined metrics
allowed us to discover solutions with up to 30% and 20% energy
saving with respect to the default configuration on MiniWeather
and CloverLeaf.

ACKNOWLEDGMENTS

This research has been funded by the European High-Performance
Computing Joint Undertaking (JU) under grant agreement No.

SYnergy: Fine-grained Energy-Efficient Heterogeneous Computing for Scalable Energy Saving SC ’23, November 12–17, 2023, Denver, CO, USA

956137 (LIGATE project) and No. 956560 (REGALE project). We
wish to thank the SC reviewers and artifact evaluators for their
extremely insightful and helpful suggestions that have significantly
improved the quality of this paper and its artifact.

REFERENCES

[1] Aksel Alpay and Vincent Heuveline. 2020. SYCL beyond OpenCL: The architec-
ture, current state and future direction of hipSYCL. In IWOCL ’20: International
Workshop on OpenCL. 8:1. https://doi.org/10.1145/3388333.3388658

[2] AMD. 2023. ROCm System Management Interface. https://github.com/
RadeonOpenCompute/rocm_smi_lib

[3] Eishi Arima, Minjoon Kang, Issa Saba, Josef Weidendorfer, Carsten Trinitis,
and Martin Schulz. 2022. Optimizing Hardware Resource Partitioning and Job
Allocations on Modern GPUs under Power Caps. In Workshop Proceedings of
the 51st International Conference on Parallel Processing, ICPP Workshops 2022,
Bordeaux, France, 29 August 2022 - 1 September 2022. ACM, 9:1–9:10.

[4] Wenlei Bao, Changwan Hong, Sudheer Chunduri, Sriram Krishnamoorthy, Louis-
Noël Pouchet, Fabrice Rastello, and P. Sadayappan. 2016. Static and Dynamic
Frequency Scaling on Multicore CPUs. ACM Trans. Archit. Code Optim. 13, 4
(2016), 51:1–51:26.

[5] Martin Burtscher, Ivan Zecena, and Ziliang Zong. 2014. Measuring GPU Power
with the K20 Built-in Sensor. In Proceedings of Workshop on General Purpose
Processing Using GPUs (Salt Lake City, UT, USA) (GPGPU-7). Association for
Computing Machinery, New York, NY, USA, 28–36.

[6] CINECA. 2023. The Marconi100 Supercomputer. https://www.hpc.cineca.it/
hardware/marconi100

[7] Mark Endrei, Chao Jin, Minh Ngoc Dinh, David Abramson, Heidi Poxon, Luiz
DeRose, and Bronis R. de Supinski. 2018. Energy efficiency modeling of parallel
applications. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage, and Analysis, SC 2018, Dallas, TX, USA, November
11-16, 2018. IEEE / ACM, 17:1–17:13.

[8] Kaijie Fan, Biagio Cosenza, and Ben H. H. Juurlink. 2019. Predictable GPUs
Frequency Scaling for Energy and Performance. In Proceedings of the 48th In-
ternational Conference on Parallel Processing, ICPP, Kyoto, Japan, August 05-08.
52:1–52:10.

[9] Yiannis Georgiou, Thomas Cadeau, David Glesser, Danny Auble, Morris Jette,
and Matthieu Hautreux. 2014. Energy Accounting and Control with SLURM
Resource and Job Management System. In Distributed Computing and Networking
- 15th International Conference, ICDCN 2014, Coimbatore, India, January 4-7, 2014.
Proceedings (Lecture Notes in Computer Science, Vol. 8314), Mainak Chatterjee,
Jiannong Cao, Kishore Kothapalli, and Sergio Rajsbaum (Eds.). Springer, 96–118.
https://doi.org/10.1007/978-3-642-45249-9_7

[10] Neha Gholkar, Frank Mueller, and Barry Rountree. 2016. Power Tuning HPC
Jobs on Power-Constrained Systems. In Proceedings of the 2016 International
Conference on Parallel Architectures and Compilation, PACT 2016, Haifa, Israel,
September 11-15, 2016, Ayal Zaks, Bilha Mendelson, Lawrence Rauchwerger, and
Wen-mei W. Hwu (Eds.). ACM, 179–191.

[11] David Glesser, Yiannis Georgiou, Matthieu Hautreux, and Denis Trystram. 2014.
Introducing Power-capping in Slurm scheduling. Technical Report. Lugano, Switzer-
land. https://hal.science/hal-01102285

[12] Khronos OpenCL Working Group. 2021. OpenCL 3.0 API Specification. Technical
Report. Khronos Group.

[13] Khronos OpenCL Working Group. 2021. OpenCL 3.0 C Language Specification.
Technical Report. Khronos Group.

[14] Khronos SYCLWorking Group. 2021. SYCL 2020 Specification, revision 3. Technical
Report. Khronos Group.

[15] Joao Guerreiro, Aleksandar Ilic, Nuno Roma, and Pedro Tomas. 2018. GPGPU
Power Modelling for Multi-Domain Voltage-Frequency Scaling. In 24th IEEE
International Symposium on High-Performance Computing Architecture, HPCA.

[16] Meng Hao, Weizhe Zhang, Yiming Wang, Gangzhao Lu, Farui Wang, and Athana-
sios V. Vasilakos. 2021. Fine-Grained Powercap Allocation for Power-Constrained
Systems Based on Multi-Objective Machine Learning. IEEE Trans. Parallel Dis-
tributed Syst. 32, 7 (2021), 1789–1801.

[17] JA Herdman, WP Gaudin, Simon McIntosh-Smith, Michael Boulton, David A
Beckingsale, AC Mallinson, and Stephen A Jarvis. 2012. Accelerating hydrocodes
with OpenACC, OpenCL and CUDA. In 2012 SC Companion: High Performance
Computing, Networking Storage and Analysis. IEEE, 465–471.

[18] Michael A. Heroux, Lois McInnes, Xiaoye Sherry Li, James Ahrens, Todd Munson,
Kathryn Mohror, Terece Turton, Jeffrey Vetter, and Rajeev Thakur. 2022. ECP
Software Technology Capability Assessment Report. Technical Report. https:
//doi.org/10.2172/1888898

[19] M. Horowitz, T. Indermaur, and R. Gonzalez. 1994. Low-power digital design. In
Proceedings of 1994 IEEE Symposium on Low Power Electronics. 8–11.

[20] Intel. 2014. RAPL Running Average Power Limit Power Meter. https://01.org/
blogs/2014/running-average-power-limit-âĂŞ-rapl

[21] Intel. 2022. Level Zero Specification documentation. https://spec.oneapi.io/level-
zero/latest/index.html

[22] Intel. 2022. oneAPI Data Parallel C++ compiler. https://github.com/intel/llvm/
releases/tag/2022-09 Online; accessed 6 Apr 2023.

[23] Shailendra Jain, Surhud Khare, Satish Yada, V. Ambili, Praveen Salihundam, Shiva
Ramani, Sriram Muthukumar, M. Srinivasan, Arun Kumar, Shasi Kumar, Rajara-
man Ramanarayanan, Vasantha Erraguntla, Jason Howard, Sriram R. Vangal,
Saurabh Dighe, Gregory Ruhl, Paolo A. Aseron, Howard Wilson, Nitin Borkar,
Vivek De, and Shekhar Borkar. 2012. A 280mV-to-1.2V wide-operating-range IA-
32 processor in 32nm CMOS. In IEEE International Solid-State Circuits Conference,
ISSCC. 66–68.

[24] Morris Jette and Danny Auble. 2012. SLURM Integration with IBM Parallel
Environment. SLURM User Group Meeting.

[25] Hamidreza Khaleghzadeh, Muhammad Fahad, Arsalan Shahid, Ravi Reddy Manu-
machu, and Alexey Lastovetsky. 2021. Bi-Objective Optimization of Data-Parallel
Applications on Heterogeneous HPC Platforms for Performance and Energy
Through Workload Distribution. IEEE Transactions on Parallel and Distributed
Systems 32, 3 (2021), 543–560. https://doi.org/10.1109/TPDS.2020.3027338

[26] Karlo Kraljic, Daniel Kerger, and Martin Schulz. 2022. Energy Efficient Frequency
Scaling on GPUs in Heterogeneous HPC Systems. In Architecture of Computing
Systems - 35th International Conference, ARCS 2022, Heilbronn, Germany, September
13-15, 2022, Proceedings (Lecture Notes in Computer Science, Vol. 13642). Springer,
3–16.

[27] Alexey Lastovetsky and Ravi Reddy Manumachu. 2017. New Model-Based Meth-
ods and Algorithms for Performance and Energy Optimization of Data Parallel
Applications on Homogeneous Multicore Clusters. IEEE Transactions on Parallel
and Distributed Systems 28, 4 (2017), 1119–1133.

[28] A Mallinson, D Beckingsale, W Gaudin, J Herdman, and S Jarvis. 2013. Towards
portable performance for explicit hydrodynamics codes. In The International
Workshop on OpenCL (IWOCL), Vol. 2013.

[29] Ravi Reddy Manumachu and Alexey L. Lastovetsky. 2018. Bi-Objective Opti-
mization of Data-Parallel Applications on Homogeneous Multicore Clusters for
Performance and Energy. IEEE Trans. Computers 67, 2 (2018), 160–177.

[30] Matthew Norman, Isaac Lyngaas, Abhishek Bagusetty, and Mark Berrill. 2022.
Portable C++ Code that can Look and Feel Like Fortran Code with Yet Another
Kernel Launcher (YAKL). International Journal of Parallel Programming (2022),
1–22.

[31] Matthew R Norman and USDOE. 2020. miniWeather. https://doi.org/10.11578/
dc.20201001.88

[32] NVIDIA. 2023. NVIDIA NVML API Reference Guide. https://docs.nvidia.com/
deploy/nvml-api/index.html

[33] George Papadimitriou, Athanasios Chatzidimitriou, and Dimitris Gizopoulos.
2019. Adaptive Voltage/Frequency Scaling and Core Allocation for Balanced
Energy and Performance on Multicore CPUs. In HPCA. IEEE, 133–146.

[34] Srinivasan Ramesh, Swann Perarnau, Sridutt Bhalachandra, Allen D. Malony, and
Peter H. Beckman. 2019. Understanding the Impact of Dynamic Power Capping on
Application Progress. In 2019 IEEE International Parallel and Distributed Processing
Symposium, IPDPS 2019, Rio de Janeiro, Brazil, May 20-24, 2019. IEEE, 793–804.

[35] Haris Ribic and Yu David Liu. 2016. AEQUITAS: Coordinated Energy Man-
agement Across Parallel Applications. In Proceedings of the 2016 International
Conference on Supercomputing, ICS 2016, Istanbul, Turkey, June 1-3, 2016, Ozcan
Ozturk, Kemal Ebcioglu, Mahmut T. Kandemir, and Onur Mutlu (Eds.). ACM,
4:1–4:12.

[36] Issa Saba, Eishi Arima, Dai Liu, and Martin Schulz. 2022. Orchestrated Co-
scheduling, Resource Partitioning, and Power Capping on CPU-GPU Heteroge-
neous Systems via Machine Learning. In Architecture of Computing Systems - 35th
International Conference, ARCS 2022, Heilbronn, Germany, September 13-15, 2022,
Proceedings (Lecture Notes in Computer Science, Vol. 13642), Martin Schulz, Carsten
Trinitis, Nikela Papadopoulou, and Thilo Pionteck (Eds.). Springer, 51–67.

[37] Philip Salzmann, Fabian Knorr, Peter Thoman, Philipp Gschwandtner, Biagio
Cosenza, and Thomas Fahringer. 2023. An Asynchronous Dataflow-Driven
Execution Model For Distributed Accelerator Computing. In 23rd IEEE/ACM
International Symposium on Cluster, Cloud and Internet Computing, CCGrid 2023,
Bangalore, India, May 1-4, 2023. IEEE, 82–93.

[38] Mohammed Sourouri, Espen Birger Raknes, Nico Reissmann, Johannes Langguth,
Daniel Hackenberg, Robert Schöne, and Per Gunnar Kjeldsberg. 2017. Towards
fine-grained dynamic tuning of HPC applications on modern multi-core ar-
chitectures. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, SC 2017, Denver, CO, USA, November
12 - 17, 2017. ACM, 41.

[39] Peter Thoman, Philip Salzmann, Biagio Cosenza, and Thomas Fahringer. 2019.
Celerity: High-Level C++ for Accelerator Clusters. In Euro-Par 2019: Parallel
Processing - 25th International Conference on Parallel and Distributed Computing,
G"ottingen, Germany, August 26-30, 2019, Proceedings (Lecture Notes in Computer
Science, Vol. 11725). Springer, 291–303.

[40] David Wallace. 2014. SLURM on Cray Systems. Slurm Birds of a Feather, Interna-
tional Conference for High Performance Computing, Networking, Storage, and
Analysis, SC.

https://doi.org/10.1145/3388333.3388658
https://github.com/RadeonOpenCompute/rocm_smi_lib
https://github.com/RadeonOpenCompute/rocm_smi_lib
https://www.hpc.cineca.it/hardware/marconi100
https://www.hpc.cineca.it/hardware/marconi100
https://doi.org/10.1007/978-3-642-45249-9_7
https://hal.science/hal-01102285
https://doi.org/10.2172/1888898
https://doi.org/10.2172/1888898
https://01.org/blogs/2014/running-average-power-limit-–-rapl
https://01.org/blogs/2014/running-average-power-limit-–-rapl
https://spec.oneapi.io/level-zero/latest/index.html
https://spec.oneapi.io/level-zero/latest/index.html
https://github.com/intel/llvm/releases/tag/2022-09
https://github.com/intel/llvm/releases/tag/2022-09
https://doi.org/10.1109/TPDS.2020.3027338
https://doi.org/10.11578/dc.20201001.88
https://doi.org/10.11578/dc.20201001.88
https://docs.nvidia.com/deploy/nvml-api/index.html
https://docs.nvidia.com/deploy/nvml-api/index.html

SC ’23, November 12–17, 2023, Denver, CO, USA Kaijie Fan, Marco D’Antonio, Lorenzo Carpentieri, Biagio Cosenza, Federico Ficarelli, and Daniele Cesarini

[41] Qiang Wang and Xiaowen Chu. 2020. GPGPU Performance Estimation With
Core and Memory Frequency Scaling. IEEE Trans. Parallel Distributed Syst. 31, 12
(2020), 2865–2881.

[42] Jonathan A. Winter, David H. Albonesi, and Christine A. Shoemaker. 2010.
Scalable thread scheduling and global power management for heterogeneous
many-core architectures. In 19th International Conference on Parallel Architectures
and Compilation Techniques, PACT 2010, Vienna, Austria, September 11-15, 2010,
Valentina Salapura, Michael Gschwind, and Jens Knoop (Eds.). ACM, 29–40.

[43] Andy B. Yoo, Morris A. Jette, and Mark Grondona. 2003. SLURM: Simple
Linux Utility for Resource Management. In Job Scheduling Strategies for Par-
allel Processing, 9th International Workshop, JSSPP 2003, Seattle, WA, USA, June
24, 2003, Revised Papers (Lecture Notes in Computer Science, Vol. 2862), Dror G.
Feitelson, Larry Rudolph, and Uwe Schwiegelshohn (Eds.). Springer, 44–60.
https://doi.org/10.1007/10968987_3

[44] Andy B. Yoo, Morris A. Jette, and Mark Grondona. 2003. SLURM: Simple Linux
Utility for Resource Management. In Job Scheduling Strategies for Parallel Pro-
cessing, Gerhard Goos, Juris Hartmanis, Jan van Leeuwen, Dror Feitelson, Larry
Rudolph, and Uwe Schwiegelshohn (Eds.). Vol. 2862. Springer Berlin Heidelberg,
Berlin, Heidelberg, 44–60. Series Title: Lecture Notes in Computer Science.

[45] Huazhe Zhang and Henry Hoffmann. 2018. Performance & Energy Tradeoffs
for Dependent Distributed Applications Under System-wide Power Caps. In
Proceedings of the 47th International Conference on Parallel Processing, ICPP 2018,
Eugene, OR, USA, August 13-16, 2018. ACM, 67:1–67:11.

[46] Huazhe Zhang and Henry Hoffmann. 2019. PoDD: power-capping dependent
distributed applications. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, SC 2019, Denver, Col-
orado, USA, November 17-19, 2019. ACM, 28:1–28:23.

[47] Marcela Zuluaga, Andreas Krause, and Markus Püschel. 2016. e-PAL: An Active
Learning Approach to the Multi-Objective Optimization Problem. Journal of
Machine Learning Research 17 (2016), 104:1–104:32.

https://doi.org/10.1007/10968987_3

	Abstract
	1 Introduction
	2 Motivation
	2.1 Energy Interface
	2.2 Fine-grained Energy Tuning
	2.3 Energy Support by Job Scheduler

	3 SYnergy Design
	3.1 Overview
	3.2 Deployment

	4 SYnergy Programming Interface
	4.1 SYCL
	4.2 Profiling Interface
	4.3 Frequency Scaling Interface
	4.4 Limitations

	5 Energy Metrics
	5.1 Energy Delay Products
	5.2 Energy Saving Metric
	5.3 Performance Loss Metric

	6 Modeling Methodology
	6.1 Training Phase
	6.2 Prediction Phase

	7 Energy-aware Job Scheduler
	7.1 HPC Cluster Energy Monitoring Challenges
	7.2 SLURM Plugin

	8 Experimental Evaluation
	8.1 Experimental Setup
	8.2 SYCL Benchmark Characterization Analysis
	8.3 Prediction Accuracy Analysis
	8.4 Energy Scalability on Multiple Nodes

	9 Related Work
	10 Conclusion
	Acknowledgments
	References

