
Autotuning Stencil Computations with
Structural Ordinal Regression Learning

Biagio Cosenza
Technische Universität Berlin

cosenza@tu-berlin.de

Juan J. Durillo
University of Innsbruck

juan@dps.uibk.ac.at

Stefano Ermon
Stanford University

ermon@cs.stanford.edu

Ben Juurlink
Technische Universität Berlin

b.juurlink@tu-berlin.de

Abstract—Stencil computations expose a large and complex
space of equivalent implementations. These computations often
rely on autotuning techniques, based on iterative compilation or
machine learning (ML), to achieve high performance. Iterative
compilation autotuning is a challenging and time-consuming
task that may be unaffordable in many scenarios. Meanwhile,
traditional ML autotuning approaches exploiting classification al-
gorithms (such as neural networks and support vector machines)
face difficulties in capturing all features of large search spaces.
This paper proposes a new way of automatically tuning stencil
computations based on structural learning. By organizing the
training data in a set of partially-sorted samples (i.e., rankings),
the problem is formulated as a ranking prediction model, which
translates to an ordinal regression problem. Our approach can
be coupled with an iterative compilation method or used as a
standalone autotuner. We demonstrate its potential by comparing
it with state-of-the-art iterative compilation methods on a set of
nine stencil codes and by analyzing the quality of the obtained
ranking in terms of Kendall rank correlation coefficients.

I. INTRODUCTION

Stencils are important computational patterns used in a
wide range of different applications (e.g., PDEs [1], image
processing [2], Jacobi [3]). Typically, a stencil kernel updates
each position of a two- or three-dimensional grid using that
position and a set of neighboring positions from the same or
other grids.

Stencil computations have traditionally been optimized with
diamond tiling [4], multi-dimensional tiling [5], time skew-
ing [6], SIMD instructions [7], and multi-threading [8]. The
complex interaction between the applied code transformation
(e.g., tiling) and the underlying architecture makes it hard to
find an optimal set of transformations (i.e., code variant) for
any given stencil computation. Furthermore, if such a set of
optimal transformations is found, the performance achieved is
usually not portable between different architectures or different
stencil codes.

Program automatic tuning is an approach that relies on
automated search and intelligent techniques to off-load the
traditionally time-consuming manual tuning of applications.
Autotuning makes possible the efficient exploration of the
possible variants of an application and provides some degree
of portability since autotuners can easily be re-run on different
target architectures.

A current drawback of many autotuning approaches is the
increases in compilation time. Luo et al. [9] reported the
time required by four popular approaches to automatically

tune the execution of stencil codes: three of them needed
a compilation time of more than one day for some specific
stencil computations.

The reasons for these long compilation times are twofold.
First, most autotuning approaches are based on iterative com-
pilation driven by exact1 or approximation2 search techniques.
Secondly, stencil computations expose a large search space
of possible alternatives (e.g., 106.5 in OpenTuner’s stencil
benchmark [10]), in which non-existing or complex neighbor-
ing structures make it difficult for any search techniques to
navigate these spaces.

An alternative approach consists in moving the compu-
tational effort required by autotuners to a pre-processing
phase to build a knowledge-based model, which can be later
exploited to reduce the compilation time. This is done in
related work by using supervised machine learning (ML)
methods. For example, the autotuning problem is modeled as a
classification problem, where each class corresponds to a code
variant. Algorithms such as artificial neural networks (ANNs)
or support vector machines (SVMs) are used to select the
best-performing variant (as in Leather et al. [11]). However,
the large number of code variants to execute for a stencil may
be too large to be consistently covered in a training phase. A
solution may be to select a subset of classes, but this introduces
subsequent issues: the user needs to select a representative set
of variants from a large set; thus, the selected classes may only
cover sub-optimal stencil variants for a large set of different
stencil computations.

In this paper, we present a novel approach for modeling the
performance of stencil computations using structural learning,
which aims to overcome the aforementioned problems with the
iterative-search and existing machine learning approaches. We
look at the inner structure of the training data to reorganize
the stencil code executions by type, input size, and tuning
parameters. We express the training set as a partially-ordered
set of samples, thus allowing the reformulation of the problem
in terms of ranking prediction. Formally, we propose an
ordinal regression formulation, which allows us to compare
and rank different stencil variants without executing them. This
formulation is enabled by a stencil encoding framework that

1Exact techniques guarantee that the optimal solution is found, for example
by evaluating all possible alternatives.

2Approximation techniques guarantee that a near-optimal solution is found
by evaluating a subset of all possible alternatives.



captures the static information of a stencil (such as the stencil
pattern), the input size, and the applied transformations into
a feature vector. Our approach can be used in two different
ways. On the one hand, a standalone autotuner that ranks a
set of given code variants. On the other hand, to speed up
iterative compilation methods since ranking prediction incurs
less overhead than compiling and executing a stencil on a
target architecture.

The contributions of this paper are:
1) An approach based on structural learning to model a

complex search space for program autotuning.
2) A novel problem formulation for autotuning stencil

computations based on ranking prediction.
3) A study of the ordinal regression SVM approach for

stencils including performance, parameter sensitivity,
Kendall’s τ analysis for rank correlation, and the im-
pact of the training size in both performance and rank
correlation.

4) Experimental results on a collection of 9 stencil codes
and 17 test benchmarks on an Intel Xeon E5, demon-
strating the benefits of our approach compared to itera-
tive compilation driven by different search strategies.

This paper is organized as follows. Section II elaborates
on related work on autotuning, with a focus on stencil
computations. Section III formally describes how a stencil
computation is represented as a feature vector. The machine-
learning methodology and its implementation are discussed in
Section IV and Section V, respectively. Section VI discusses
the experimental results. Finally, Section VII contains conclu-
sions and future work.

II. RELATED WORK

Optimizing the performance of stencil computations has
been thoroughly studied in related work using different ap-
proaches such as cache-oblivious algorithms [12], polyhedral
analysis [13] and analytic performance models [14]–[17].
Recently, autotuning represents one of the most used and
popular approaches so far. The increasing interest in software
autotuning is also reflected by an extensive amount of related
work ( [11], [18]–[31]). For reasons of space, we focus only
on those works pertaining to stencil computations.

Search-based techniques are the predominant approaches
for stencil autotuning. These techniques are based on iterative
compilation, where different variants of the code are executed
on a target platform to analyze their performance. As the
number of possible variants is usually very large, only a
fraction of them can be evaluated in a reasonable amount of
time. The various approaches for stencil autotuning differ in
how these variants are selected and which parameters give rise
to them.

Datta et al. [32] reduced the set of all possible variants of
several stencil computations using heuristics that impose some
constraints on these variants. The proposed approach is tested
on a wide range of different hardware architectures including
NVIDIA GeForce, IBM PowerXCell, Sun UltraSparc, AMD
Opteron and Intel Xeon. Similarly, in [33] some constraints

are imposed. In this case, stencil computations are divided into
smaller 2D blocks which are later assigned to CUDA threads.
One of the dimensions defining these blocks is constrained as a
multiple of CUDA half-warp (i.e., 16, 32, 48, 64). MODESTO
[34] is a framework that allows tuning applications composed
of several stencil computations. It uses two different search
approaches. First, it uses brute force to determine the order in
which the different stencil computations are to be executed.
Then, each stencil is individually tuned by using dynamic
programming to determine the optimal tiling parameters.

PATUS [35], Halide [2], and YAST [36] allow specify-
ing stencil computations using a domain-specific language
(DSL) and navigate the space of all possible variants using
a genetic algorithm (GA). While PATUS has been used to
target different multi-core CPUs and a single GPU, Halide is
particularly focused on image processing and their execution
on heterogeneous GPU+CPU platforms. PATUS also includes
other stochastic and heuristic search techniques, and has shown
its strength in tuning earthquake simulation applications [37]
and reproducibility studies [38]. An improved GA was also
used for tuning stencil computations targeting GPUs [16].
The OpenTuner framework [10] is a tool that allows the
autotuning of stencil computations. Instead of using a single
search algorithm, this tool includes the implementation of
several of state-of-the-art search engines, and automatically
chooses the best match for every stencil code. OpenTuner uses
a multi-arm bandit technique [39] to perform this selection.

Although search-based autotuning has been applied with
success, the increase in hardware complexity and the advent of
many-core processors also implies an increase in the number
of possible variants for executing a stencil computation. In
this context, the application of some of these techniques may
render it impossible, due to the amount of time required, to
tune a single code. In this regard, Luo et al. [9] compare the
time of different search-based autotuners. The required time
ranges respectively from two hours up to two days in the best
and worst cases.

Machine learning (ML) is an alternative to search-based
autotuning. ML-based techniques move the complexity to
a pre-processing phase where several executions of stencil
computations are performed. On the basis of these executions,
a knowledge-based model is built, and later on used to decide
which variant of an unseen stencil computation is executed.

In FAST [9], any unseen stencil is executed using historical
information from similar stencil computations. Similarity be-
tween different stencils is computed on the basis of some static
and runtime features. A similar idea is also used by Nitro [40].
ML models have been proposed to predict the optimal factor
for loop unrolling [11], [41]. In all these, autotuning is defined
as an ML classification problem in which a variant is selected
from a set. Typical algorithms used for classification are SVMs
and ANNs.

A different way of using ML is by numerically modeling the
performance of an application with regression. For example,
in [42], the performance of SIMD codes is approximated with
a linear regression model.



The method proposed in this paper is also based on Machine
Learning. Our approach is inspired by [43], which uses SVMs
to predict ordinal ranking to optimize search engines using
click-through data [44]. To the best of our knowledge, our
approach is the first stencil autotuner based on ordinal ranking
which, as will be explained in Section IV, overcomes some
drawbacks of existing classification and regression tuners. This
methodology is enabled by a new vector representation that
encodes information about stencil codes, input sizes and tuning
parameters into a feature vector.

III. STENCIL MODELING

A stencil is a geometric structure defined over a n-
dimensional field F . At time t, each point of the field is
written or updated according to a function of neighboring field
points at previous instances in time. The points considered
by that function are defined by a static pattern (also called
shape). For convenience, we deal with up to three-dimensional
stencils where time step t depends only on time step t − 1.
These assumptions cover a wide range of different stencil
computations.

We use an algebraic framework to define any stencil com-
putation, their input size, and any possible tuning parameter
applied to it. This framework allows to summarize all this
information on a single vector. Given such a vector, it is
also possible to reconstruct the stencil code and the applied
tuning. To facilitate the processing through machine learning
algorithms, each component of this vector is transformed into
a real value normalized to the interval [0, 1]. This final vector
is known as the feature vector.

A. Stencil Instance

We model any stencil computations by looking at three
parts: the stencil pattern, the number of buffers (e.g., grids) it
accesses, and the data type of these buffers. We define a stencil
kernel as a vector k = (s, b, d), where s represents the stencil
pattern, b the number of buffers and d the data type used. To
have a portable method, there are no features depending on the
hardware, e.g., SIMD width or thread affinity. To summarize,
within the feature vector k we represent all static code features
that can be extracted from a stencil code.

1) The stencil pattern: (or shape) is also vector. It specifies
the neighboring points accessed by the code. These points
are codified relative to the origin position (e.g., a two-
dimensional five-point laplacian stencil accesses the points
(0,−1), (−1, 0), (0, 0), (1, 0), and (0, 1)). By considering a
maximum offset for any neighboring point, the stencil pattern
can be represented as an n-dimensional structure (being n the
buffer dimension). For example, assuming an offset of one,
for a two-dimensional stencil the pattern can be represented
in a 3 × 3 binary matrix. The central element in this matrix
represents the point being updated. Any other cell within
the matrix indicates whether the corresponding neighbor is
accessed or not. Be the maximum offset 2, the pattern would
be represented by a 5 × 5 binary matrix. By using that

representation, we can model any possible stencil pattern,
constrained to be enclosed within the considered offset.

As example, the following matrix represents the pattern of
a two-dimensional laplacian stencil (for a maximum offset of
1):  0 1 0

1 1 1
0 1 0


For a 3-dimensional case the pattern is represented by a

3-dimensional matrix. For the sake of mapping all 2- and
3-dimensional kernels to the same feature space, we always
use 3-dimensional matrices in this work and we consider a
2-dimensional stencil as a special case of the former, where
all the computations take place on the z = 0 plane.

When a stencil computation accesses different buffers,
the access pattern is defined within our framework as the
sum of accesses to each individual buffer. This issue only
appear in one of the evaluated examples (divergence). The
n-dimensional structure containing the stencil pattern can
be represented as a sparse vector, thus efficiently storing
only the non-zero values. During the training phase, we will
automatically generate different computations using the shapes
shown in Fig. 1 with different offsets.

2) The number of buffers and types: represents how many
input buffers are read to update a position and their type. We
assume that each stencil is homogeneous on the type of input
(i.e., all buffers have the same type); therefore:

d =

{
0, if input buffer(s) data type is float
1, if input buffer(s) data type is double

(a) Line

(b) Hyperplane

(c) Hypercube (d) Laplacian

Fig. 1. 3D training stencil shapes

Finally, we define the stencil instance as q = (k, s) where a
stencil kernel described by the vector k and whose input size
is defined by s = (sx, sy, sz). A stencil instance represents



the input of our framework. Our goal is to find the best tuning
for such an instance regarding a set of code transformations.

B. Stencil Tuning Parameters

Different frameworks include different code transformations
for stencil applications. These transformations are intended to
improve code performance and can be also defined by a set
of integer parameters (e.g., the loop unrolling transformation
is defined by the unroll factor).

Given a sequence of transformations, they can be repre-
sented also as a vector within our framework. This vector
contains the parameters required for these transformations. The
leftmost values in the vector are the parameters of the first code
transformation; then the parameters to the second applied code
transformation and so on. We denote this vector as t.

We define then a stencil execution as the triple (k, s, t), i.e.,
the stencil kernel, the input size, and the tuning vector.

IV. STENCIL TUNING AS ORDINAL REGRESSION

The problem of automatic tuning of stencil computations
can be formalized as follows. For an input stencil instance
q = (k, s), our optimizer should return a tuning vector t ∈ T ,
where T is the space of all possible tuning parameters, so that
the time of executing (k, s, t) is minimum.

w

a b

c

d

(a) SVM classifica-
tion

w

a b

c

d

(b) SVM ranking

w1

w2

a b

c

d

(c) Comparing two ranking
functions

Fig. 2. From classification to ordinal regression

A. Classification and Regression

As discussed in Section II, existing machine learning au-
totuning approaches are either based on classification or on
regression. Here, we detail both approaches and highlight their
main drawbacks in the autotuning context.

1) Classification: The idea of classification is to select the
best performing code variant from a finite set of classes, based
on the similarity of the input stencil with each of these classes.
In related work, for example, classes have been defined to
determine the loop unrolling factors (e.g., 16 classes [11])
or to determine how to partition the input in heterogeneous
environments (e.g., 21 classes [28]). Classification approaches
have several drawbacks. One difficulty is determining the right
number of classes to use. Furthermore, typical classification
approaches optimize for predictive accuracy, which might not
be the correct metric in our scenario. When a stencil computa-
tion is misclassified, two possible scenarios are plausible: (1)
the predicted class offers a performance similar to the optimal
one, or (2) the predicted class offers an inferior performance.

TABLE I
EXAMPLE CONTAINING DIFFERENT STENCIL INSTANCES EXECUTIONS

Instance Input Tuning Runtime Rank

1 q1 = (k1, s1) te1 12ms 1
2 q1 = (k1, s1) te2 13ms 2
3 q1 = (k1, s1) te3 20ms 3

4 q2 = (k1, s2) te4 10ms 1
5 q2 = (k1, s2) te5 36ms 3
6 q2 = (k1, s2) te6 35ms 2

7 q3 = (k2, s1) te7 30ms 1
8 q3 = (k2, s1) te8 45ms 2
9 q3 = (k2, s1) te9 47ms 3

10 q4 = (k2, s2) te10 25ms 3
11 q4 = (k2, s2) te11 21ms 2
12 q4 = (k2, s2) te12 12ms 1

Whereas the first scenario is acceptable, the second should be
avoided. These differences are not captured by the predictive
accuracy metric. In classification approaches it is challenging
to define a loss function, required to train an ML-based model,
that is able to properly weigh such situations.

2) Regression: In a regression task, the goal is to predict
a single real number for each input. As mentioned before,
regression has been used to predict the performance of a
computation in [42]. The function describing the performance
of a stencil computation on a given hardware architecture may
be difficult to model (due to non-linearity, non-differentiability,
etc.). Learning such a function from data would require a very
large number of samples. Furthermore, obtaining such a model
is a harder problem than what is actually required for tuning
a stencil computation. Knowing the relative performance of
configurations (when one configuration is better than another)
is sufficient to find the best one. In other words, knowing their
actual (absolute) performance is a sufficient, but not necessary,
condition to be able to identify the best configuration.

B. Beyond Classification and Regression

To illustrate the ranking approach, let us assume we have
the example in Table I with only 2 kernels, 2 input sizes and
3 tuning vectors for each.

In a regression approach, one would attempt to build a
model predicting runtime as a function of the tuning param-
eters, hardware, etc. In a classification approach, one would
attempt to classify kernels into classes (e.g., good vs. fair vs.
bad performance).

We follow a different approach. We look at the training
set in terms of (partial) rankings. For each training instance,
it is possible to define an ordering of the stencil execution,
and therefore a global partial ordering, so that the following
inequalities apply (transitive inequalities are omitted):

te1 < te2 te2 < te3 te4 < te6 te6 < te5
te7 < te8 te8 < te9 te12 < te11 te11 < te10

This problem, consisting of predicting structures (e.g., rank-
ing) from data instead of discrete (classification) or continuous
values (regression), is known as structural learning [45]. In the



following, we describe a learning algorithm that allows to use
that information type in the construction of the model.

C. Structural Learning Based on SVM

For a stencil instance qi = (ki, si) and a list of tuning
settings te1 , . . . teE

, we define a ranking function r as one that
allows to sort the E possible stencil executions (ki, si, tej

) in
terms of their performance. More specifically, we consider r as
a function defined from the set of possible stencil computations
to real values representing the rank of these computations.

The general idea of our structural approach is to use ranking
information from the training instances for building a ranking
function r. Ideally, this function will produce reliable rankings
for previously unseen instances (not in the training set). Once
defined, we make use of r, which in general should be easier
to evaluate than executing the stencil itself, to quickly sort
different stencil executions for a given stencil instance qi and
different tuning vectors. We use the output of this function
to determine the tuning vector tej that produce the highest
performance version of qi.

For example, let us consider that our training set is com-
posed of n stencil instances. Each instance consists of an
execution of a stencil computation qk with 1 ≤ k ≤ n using a
given tuning setting tek

∈ T . Let us also assume that yk, with
1 ≤ k ≤ n, represents the execution time for that element. The
goal is to compute a function r(q, t) so that, for any pair of
stencil executions (qi, ti) and (qj , tj) whose execution times
are yi and yj , respectively, with 1 ≤ i, j ≤ n, it holds that
r(qi, ti) < r(qj , tj)⇔ yi < yj .

Given a training set like the one indicated before, it is
possible to sort and assign a ranking to each point in it.
Let us represent as r∗qi,ti as the real ranking of the stencil
execution (qi, ti) in the training set. Given a function τq which
measures the similarity between the predicted and the real
ranking for a stencil instance q, our learning problem consists
in determining the ranking function r(q, t) which maximizes
the ranking similarity over all instances in the training data.
This problem can be formally described as:

max
∑
qi∈Q

τqi(r, r
∗), (1)

with Q being the set of all stencil instances in the training set.
One of the most effective ways to solve the learning problem

described in Equation (1) is to use SVMs as described in [44].
If we denote as P the set of all pairs (i, j) for which the
instance i has a higher rank than j, i.e., P = {(i, j) : yi > yj},
and let m = |P |, under some assumptions the problem is
equivalent to solving the following optimization problem (see
details in [44]):

min
w,ξ≥0

1

2
wTw +

C

m

∑
(i,j)∈P

ξi,j

subject to ∀(i, j) ∈ P : (wT qi, ti) ≥ (wT qj , tj) + 1− ξi,j
(2)

This formulation finds a function r(q, t) linear in the fea-
tures q, parameterized by a weight vector w, that minimizes

the number of pairs in the training data that are swapped
with respect to their real ranking (i.e., ordering based on
performance evaluation). In particular, that ranking function
consists of the projection of the features corresponding to a
stencil execution onto the vector w, or equivalently, the signed
distance to a hyperplane with normal vector w (see Fig. 2c).
In this equation, ξi,j are called slack variables and are used to
represent the possibility of mispredictions. The parameter C is
used to regularize and controls the trade-off between margin
size and training error.

D. Ordinal Regression with Partial Ranking

Equation (2) assumes that a ranking of all points in the
training set exists. Our training data set, however, only exposes
partial ranking information, i.e. ranking for each qi: we cannot
sort stencil executions belonging to different stencils k or
input size s. Therefore, let us define Pi ⊂ P as the set of
inequalities generated by the instance qi, i.e., Pi = {(j, k) ∈
P : (j, k) are generated from (qi, tj), (qi, tk) and yj > yk}.

Assuming that P1, P2 · · ·Pn are all partial rankings avail-
able in the training set, we modify Equation (2) to match our
case:

min
w,ξ≥0

1

2
wTw +

C

m′

∑
i

∑
(j,k)∈Pi

ξj,k

subject to
∀(j, k) ∈ P1 : (wT q1, tj) ≥ (wT q1, tk) + 1− ξj,k
∀(j, k) ∈ P2 : (wT q2, tj) ≥ (wT q2, tk) + 1− ξj,k
· · ·
∀(j, k) ∈ Pn : (wT qn, tj) ≥ (wT qn, tk) + 1− ξj,k

(3)

where m′ = |
⋃
i Pi| and n = |Q|. Using this formulation

allows to find a ranking function that has a low number of
discordants pairs regarding the same stencil instance.

V. IMPLEMENTATION

Without loss of generality, we validate our approach using
the PATUS DSL source-to-source stencil compiler [37], which
generates C code with multi-threading and SIMD instructions
(e.g., AVX). PATUS exposes loop blocking, loop unrolling and
multi-threading chunking. Loop blocking is applied to all loop
levels, thereby requiring two or three blocking sizes (bx, by ,
and bz) to tune, depending on the number of dimensions of
the stencil code. We consider each of these sizes ranges from
2 to 1024. Afterwards, loop unrolling (u) is applied to the
innermost loop. The unrolling factor may vary between 0 (no
unrolling) and 8. In addition, after transforming the code with
tiling and unrolling, a third tuning parameter is required for
executing the code: the chunk size (c). This parameter refers to
the number of consecutive tiles that are assigned to the same
thread. Therefore, our tuning vector consist of 5 components
t = (bx, by, bz, u, c). If other code generators such as Halide
are considered, the tuning vector would be composed by those
parameters regarding the transformations applied by them.

The rest of this section addresses several implementation
issues: a) the compilation work-flow, which translates stencils
written in a DSL to final executable; b) the training set



generation; c) the execution phase; and, d) the implementation
of the ordinal regression method.

A. Compilation Work-flow

Firstly, we automatically generate different stencil codes
for PATUS. Then, the PATUS compiler translates them into C
code with OpenMP loop annotations aimed to exploit multi-
threading parallelism, and AVX vector instructions aimed to
exploit instruction level parallelism. A binary executable is
finally generated out of the C code by using a backend
compiler (gcc 4.8.4 in our case). This double compilation
process may be particularly slow for very dense stencil pattern
(e.g., it takes about 32 hours to generate all the binary files of
all the codes composing our training set).

Fig. 3. Training phase.

B. Training Set Generation

Fig. 3 depicts all the tasks performed in the training phase.
The code generator generates several stencil codes with dif-
ferent shapes (line, hyperplane, hypercube and laplacian, see
Fig. 1), number of buffers and buffer types. The generated
stencil codes are used for extracting their static features
described in section III-A and codify them in form of vectors.

We generate 60 different stencil codes, including both 2- and
3-dimensional ones. We consider different stencil instances by
using different input sizes for each of the generated stencil
codes. In particular, we use 643, 1283, and 2563 for 3-
dimensional computations and 2562, 5122, 10242, and 20482

for 2-dimensional ones. The total number of instances q is
200. Each of these instances is executed with a varying
number of randomly generated tuning vectors t. As three-
dimensional stencils expose a larger search space (i.e., more
tuning possibilities), we generate twice as many tuning vectors
as for two-dimensional kernels.

The performance measurements obtained after evaluating
the stencil instances with the tuning vectors are collected into
the training dataset as follows. For each stencil instance, we
sort all the executions based on their performance, generating
a rank for each of them. Finally, each feature vector together
with tuning vector and corresponding rank is stored in the
training data set for each stencil execution.

After the generation of the training set, the results are
partially sorted so that, for each instance q, a partial ranking
of the tuning vectors is available. This ranking is used as input
by the ordinal regression algorithm.

All these steps are performed automatically in our frame-
work. This eases the porting of our model to any system
supported by the PATUS compiler such as Intel Phi, NVIDIA
GPUs, or AMD Opteron (or the platforms the chosen code
generator supports).

C. Execution

When a new unseen stencil is presented to the analyzer, its
static features are extracted and the code is passed onto the
double compilation process to generate the executable. These
features and the stencil size are provided to the previously
generated model. The model also requires several possible
tuning settings. These settings can be generated based on user
experience, randomly, or using a higher level method (e.g.,
a search algorithm exploring the search space). The model
then ranks these settings by predicting a ranking for each of
these setting (notice that there is no need to perform any extra
execution at this point, these rankings are computed based on
training data). Finally, the stencil program is executed using
the first-ranked tuning configuration.

D. Ordinal Regression Implementation

We use Joachims’ implementation of SVM-Rank [43] to
predict these rankings. This implementation is fast and makes
use of a linear kernel for the SVM. Table II summarizes the
training and regression times. The model training has been
performed with a linear kernel and C = 0.01. We experi-
mentally measured a training time shorter than 1 second for
datasets smaller than 45K points. Even faster is the regression
time, i.e., the time to rank different tuning versions once the
ML method has been trained. For all the data sizes we tested,
SVM-Rank took less than 1ms.

TS Size TS Comp. TS Generation Training Regression

960

32h

4m 0.01s <1 ms
1,920 9m 0.01s <1 ms
2,880 12m 0.01s <1 ms
3,840 17m 0.01s <1 ms
4,800 21m 0.01s <1 ms
5,760 26m 0.01s <1 ms
6,720 30m 0.01s <1 ms
7,680 36m 0.02s <1 ms
8,640 39m 0.02s <1 ms
9,600 43m 0.02s <1 ms
16,000 72m 0.07s <1 ms
32,000 145m 0.36s <1 ms

TABLE II
COMPUTING TIME OF DIFFERENT PHASES FOR DIFFERENT TRAINING SET

SIZES AND PARAMETERS ON XEON E5. ALL PHASES ARE
PRE-PROCESSING PHASES EXCEPT FOR REGRESSION.

VI. EXPERIMENTAL EVALUATION

The goal of this section is to assess the quality of our model.
First, we compare our best-ranked solutions with the solutions
computed by iterative search-based approaches, which have
been generated after a long compilation process. Second, we
focus on a given code and input size and analyze the quality



of the obtained ranking with a metric existing in the literature,
i.e., the Kendall τ .

We evaluate our framework using nine stencil codes, listed
in Table III, which represent different shapes and memory
patterns. These stencils are executed with different input sizes,
for a total of 17 test benchmarks. The experiments have been
performed on an Intel Xeon E5-2680 v3 with 12 cores running
at 2.50 GHz, with 256K of L2 cache and 32 GB of RAM.

A. Ordinal Regression vs Iterative Search

The goal of this experiment is to assess the quality of
the ordinal regression model. For this, we compare the best-
ranked solution provided by our model on a pre-defined set of
configurations against the results computed by search-based
iterative compilation methods.

The quality of the configurations returned by search meth-
ods depends on the performed number of evaluations, which
usually lead to high compilation times. In our approach, the
computational effort is moved to a previous training phase.
Once this phase is completed, ranking several tuning config-
urations is immediate (see Table II), and so is the generation
of a high performance version of a stencil in compile time.

As some search methods perform better than others de-
pending on some search space properties [46], we consider
here four different search techniques performing 1024 evalu-
ations each: evolutive strategy, differential evolution, and two
different genetic algorithms, a generational one and a steady-
state [47]. We could have used a framework like OpenTuner,
which also includes these search techniques. However, Open-
Tuner automatically drops the evaluation of under-performing
search algorithms in early stages of the search (as soon as
an algorithm shows an inferior behavior than others). On the
contrary, we run every search for a fixed number of iterations
regardless of their performance. Therefore, if the search algo-
rithms are properly implemented and the same search space is
used for each tuning parameter, the considered search methods
and OpenTuner should lead to the same results.

We train our model using a linear kernel, C = 0.01 and
four different training sizes, i.e., 960, 3840, 6720, and 16000
different points. Once the model is built for each different
training size, we use it for ranking the pre-defined set of
tuning configurations. This set consists of 1600 for 2d stencils
and 8640 for the 3d cases. These options are statically chosen
in a way that the search space is hierarchically sampled, by
considering all combinations consisting of power of two values
for each tuning parameter. We compare the top ranked tuning
configuration out of the pre-defined set versus the search
methods. It is worth highlighting that the performance we
obtain with our approach is bound by the solution performing
the best in the pre-defined set. Nevertheless, our point is that
if we achieve a performance comparable to search methods,
then our method has been able to accurately rank the presented
1600 (8640) tuning alternatives.

Fig. 4 shows the speedup of the different benchmarks
achieved by the analyzed search techniques and the ordinal
regression model with the different training sizes. These

speedups are relative to a base configuration for every bench-
mark, as will be explained below. Fig. 5 shows the intermediate
search results, which help us to understand how search-based
iterative compilation techniques work. Details of the analyzed
test benchmarks can be found in Table III. In the following,
we further analyze the data depicted in Figures 4 and 5. We
selected the best solution found by a generational genetic
algorithm after 1024 evaluations as the base configuration to
compute the speedup. We considered this algorithm because
in our experiments it has shown to be the most stable of
the analyzed search techniques. It is important to highlight
that such a configuration is usually generated by the genetic
algorithm in a tuning process that lasts from minutes to hours,
depending on the stencil computation. Fig. 4 shows that the top
ranked configurations within our model lead to performances
similar to those achieved by search-based iterative compila-
tions. Furthermore, in two computations (gradient with input
size 1283 and 2563) our model computed solutions of higher
quality than any of the analyzed search techniques. The top-
ranked solution for the laplacian stencil with input 1283

represents the case where differences between our approach
and search-based methods are the largest. However, even in
this case, the regression model is still able to rank the pre-
defined set achieving a performance of 75% of the genetic
algorithm solution.

A closer look at the figure indicates that ordinal regression
performs well even with small training sizes. For example,
the smallest training set, whose generation took less than five
minutes, returns results similar to those of the larger models
with more samples. Apparently, in this experiment the training
set size partially influences the quality of the best-ranked
solution; however, we will see in the next section that the
training set size remarkably improves the overall quality of
the produced rankings. This experiment shows that even with
a small training size, the model is able to produce fast top-
ranked solutions.

Fig. 5 includes further details for four stencil codes. In
particular, it shows the performance of different search tech-
niques across different number of evaluations. The vertical axis
represents the performance in GFlops/s. The horizontal axis
represents the number of evaluations performed by the search
techniques. The results of our ordinal regression approach are
depicted by a horizontal line. The bar chart on the side shows
the time-to-solution for all methods.

Firstly, we show an example of a gradient stencil with size
2563. The ordinal regression method has ranked the evaluated
points correctly and the top ranked configuration outperforms
the tuning achieved by any of the applied search methods.

The second graph shows the results for the tricubic stencil
with size 2563. Due to its simple memory access pattern, it
represents an easy-to-tune problem. Search-based autotuning
and ordinal regression reached the same solution. In spite of
the low complexity of tricubic, any of the search-based ap-
proaches needed hundreds of evaluations to find a sub-optimal
configuration. Also for the third analyzed stencil computation,
blur with size 1024×768, search-based autotuning and the top



Stencil Code Type Shape Buffer read Sizes

Blur 2D 5× 5 hypercube 1 float 10242, 1024× 768
Edge 2D 3× 3 hypercube 1 float 5122, 10242

Game of life 2D 3× 3 hypercube 1 float 5122, 10242

Wave 3D 13 laplacian + 1 1 float 1283, 2563

Tricubic 3D 4× 4× 4 hypercube 3 float 1283, 2563

Divergence 3D 6 laplacian (center point not read) 3 double 1283

Gradient 3D 6 laplacian (center point not read) 1 double 1283, 2563

Laplacian 3D 7 laplacian 1 double 1283, 2563

6th order laplacian 3D 19 laplacian 1 double 1283, 2563

TABLE III
STENCIL TEST BENCHMARKS. THE TEST SET INCLUDES 9 KERNELS WITH DIFFERENT SIZES, FOR A TOTAL OF 17 BENCHMARKS.

blur
1024x1024

blur
1024x768

wave-1
128x128x128

wave-1
256x256x256

tricubic
128x128x128

tricubic
256x256x256

edge
512x512

edge
1024x1024

game-of-life
512x512

game-of-life
1024x1024

divergence
128x128x128

gradient
128x128x128

gradient
256x256x256

laplacian
128x128x128

laplacian
256x256x256

laplacian6
128x128x128

laplacian6
256x256x256
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Fig. 4. Speedup regarding a base configuration found by a genetic algorithm after 1024 evaluations.
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Fig. 5. Performance results for four stencil benchmarks on a Xeon E5-2680. Ordinal ranking results are shown as horizontal lines. The horizontal axis shows
the number of evaluations performed by the different search techniques. The side chart shows the time-to-solution for all methods, in logarithmic scale.

configuration ranked by the regression led to similar results.
The fourth stencil is called divergence and has size 1283.

This code is more challenging than the ones described above,
since it has non-homogeneous buffer accesses and its three
buffers are accessed in different ways (i.e., line shape on the
x, y and z axes respectively, which we have represented as
laplacian in our system). We observe in this case that the top
ranked configuration by ordinal regression is outperformed by
search based solutions only after hundred of evaluations.

Summing up, given a defined set of tuning configurations,
the ordinal regression is able to accurately rank them. In our
experiments the top ranked configuration of a pre-defined set

is close in performance to that of a genetic algorithm with
1024 evaluations. It is worth to highlight again that a) the
performance obtained by our method is bound to the solution
performing the best in the pre-defined set for this experiment;
and b) the regression methods compute these solutions in less
than a second, while the genetic algorithm may require hours
to arrive to that solution.

B. Ranking Evaluation

In this section we evaluate the accuracy or the ordinal
regression when ranking configurations. Different ways of
measuring the similarity between rankings exist. In this paper,



we use the Kendall τ [48] coefficient to assess the quality of
our approach. This coefficient measures the ordinal association
between two measured quantities; in other words, whether
the order between pair of solutions is maintained across the
two quantities. In our case, the measured quantities are the
order of different stencil instances when looking at their actual
execution time, and the ranking provided by the SVM-rank
method.

Formally, τ is defined as follows. Given two finite ordering
ra, rb ⊂ Q × Q, where Q is the set of all stencil instances,
the Kendall τ is defined based on the number of concordant
pairs Con and the number of discordant pairs Dis (number of
inversions):

τ(ra, rb) =
Con− Dis
Con + Dis

= 1− 2Dis(
m
2

) .
If the agreement between the two rankings is perfect, the

coefficient has the value 1. If the the two rankings totally
disagree, the coefficient has the value –1. If the two rankings
are independent, then we would expect the coefficient to be
approximately zero.
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Fig. 6. The Kendall τ on the training set with two different sizes.

We take the existing orderings in the training set and com-
pare them with those we obtain with our model. Fig. 6 shows
the τ coefficients for two different sizes. As we only evaluate
partial rankings, for each stencil instance in the training pattern
q = (k, s), we show the τ value for all configurations with
such q. The τ coefficients are higher with larger training sets,
and they correlate with training set size. Therefore, when
the number of points used for training increases, the ranking
prediction also improves.
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Fig. 7. The Kendall τ distribution with different sizes, and C=0.01.

Fig. 7 shows: in blue, the inter-quartile range and outliers
(box plot); in yellow, a violin plot of a Gaussian kernel density
estimation of the underlying τ distribution; finally, the red
point in the middle represents the median value.

The results show that, by increasing the number of samples,
Kendall’s τ distribution slightly improves on average, but
consistently improves in variance, therefore stabilizing the
quality of the ranking over the whole training set.

VII. CONCLUSION

We presented a novel structural learning approach aimed
at automatically tuning stencil computations. In the proposed
autotuning framework, static information of the stencil code,
input size and the applied code transformations are captured
in a feature vector, which is used to enable structural learning.

With respect to other traditional machine learning ap-
proaches used for automatic tuning, typically based on clas-
sification or regression, we formulate the problem as ordinal
regression. For each pair of stencil code and input size, differ-
ent code transformations are sorted by performance, therefore
exposing a partial ordering of all the stencil executions in the
training set. This partial ordering, i.e., ranking, is used to train
an ordinal regression support vector machine able to predict
the ranking of any possible code transformation, for a given
input code and size. From the resulting ranking of possible
transformations, the best ranked is selected to be executed.

Experimental evaluations show that even with a small
training set consisting of a few thousand points, the best-
ranked code version performs close to the sub-optimal solution
delivered by 1024 evaluations of an iterative genetic algorithm.
Larger training sets, however, considerably improve the ability
of the model to correctly rank code versions, measured in
Kendall’s τ correlation coefficient.

The proposed approach can be used in any software opti-
mization scenario where the runtime of different code variants
can be organized into partial rankings. In future work, we plan
to exploit the ability to rank multiple code variants without
executing them to speed up autotuning compilers based on
iterative compilation. In addition, we want to analyze different
mechanisms for generating training sets (such as the use of
heuristic methods to gather training data) in order to improve
the quality of the model generated.
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[19] C. Ţăpuş, I.-H. Chung, and J. K. Hollingsworth, “Active harmony:
Towards automated performance tuning,” in ACM/IEEE Conference on
Supercomputing (SC), 2002, pp. 1–11.

[20] S. Long and M. F. P. O’Boyle, “Adaptive Java optimisation
using instance-based learning,” in International Conference on
Supercomputing, ICS, 2004, pp. 237–246.

[21] R. Vuduc, J. W. Demmel, and K. A. Yelick, “OSKI: A library of
automatically tuned sparse matrix kernels,” in Proc. SciDAC, J. Physics:
Conf. Ser., vol. 16, 2005, pp. 521–530.

[22] N. Thomas, G. Tanase, O. Tkachyshyn, J. Perdue, N. M. Amato, and
L. Rauchwerger, “A framework for adaptive algorithm selection in
stapl,” in ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming (PPoPP), 2005, pp. 277–288.

[23] F. V. Agakov, E. V. Bonilla, J. Cavazos, B. Franke, G. Fursin, M. F. P.
O’Boyle, J. Thomson, M. Toussaint, and C. K. I. Williams, “Using
machine learning to focus iterative optimization,” in Int. Symposium on
Code Generation and Optimization (CGO), 2006, pp. 295–305.

[24] J. Cavazos and M. F. P. O’Boyle, “Method-specific dynamic
compilation using logistic regression,” in ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA), 2006, pp. 229–240.

[25] J. Pjesivac-Grbovic, G. Bosilca, G. E. Fagg, T. Angskun, and
J. Dongarra, “Decision trees and MPI collective algorithm selection
problem,” in Euro-Par: International European Conference on Parallel
and Distributed Computing, 2007, pp. 107–117.

[26] J. Ansel, C. Chan, Y. L. Wong, M. Olszewski, Q. Zhao, A. Edelman, and
S. Amarasinghe, “Petabricks: A language and compiler for algorithmic
choice,” in ACM SIGPLAN Conf. on Programming Language Design
and Implementation (PLDI), 2009, pp. 38–49.

[27] D. Grewe and M. F. P. O’Boyle, “A static task partitioning approach for
heterogeneous systems using opencl,” in Proc. of the 20th International
Conference on Compiler Construction (CC), 2011, pp. 286–305.

[28] K. Kofler, I. Grasso, B. Cosenza, and T. Fahringer, “An automatic
input-sensitive approach for heterogeneous task partitioning,” in ACM
International Conference on Supercomputing (ICS), 2013, pp. 149–160.

[29] H. Jordan, S. Pellegrini, P. Thoman, K. Kofler, and T. Fahringer,
“INSPIRE: The Insieme parallel intermediate representation,” in Int.
Conference on Parallel Architectures and Compilation Techniques
(PACT), 2013, pp. 7–18.

[30] Z. Wang, G. Tournavitis, B. Franke, and M. F. P. O’Boyle,
“Integrating profile-driven parallelism detection and machine-learning-
based mapping,” TACO, vol. 11, no. 1, p. 2, 2014.

[31] K. Kofler, B. Cosenza, and T. Fahringer, “Automatic data layout
optimizations for GPUs,” in Euro-Par: International Conference on
Parallel and Distributed Computing, 2015, pp. 263–274.

[32] K. Datta, M. Murphy, V. Volkov, S. Williams, J. Carter, L. Oliker,
D. Patterson, J. Shalf, and K. Yelick, “Stencil computation optimization
and auto-tuning on state-of-the-art multicore architectures,” in
ACM/IEEE Conf. on Supercomputing (SC), 2008, pp. 4:1–4:12.

[33] Y. Zhang and F. Mueller, “Autogeneration and autotuning of 3d stencil
codes on homogeneous and heterogeneous GPU clusters,” IEEE Trans.
Parallel Distributed System, vol. 24, no. 3, pp. 417–427, Mar. 2013.

[34] T. Gysi, T. Grosser, and T. Hoefler, “Modesto: Data-centric
analytic optimization of complex stencil programs on heterogeneous
architectures,” in ACM International Conference on Supercomputing
(ICS), 2015, pp. 177–186.

[35] M. Christen, O. Schenk, and H. Burkhart, “Patus: A code generation
and autotuning framework for parallel iterative stencil computations
on modern microarchitectures,” in IEEE International Parallel &
Distributed Processing Symposium (IPDPS), 2011, pp. 676–687.

[36] C. Yount, J. Tobin, A. Breuer, and A. Duran, “Yask-yet another stencil
kernel: A framework for hpc stencil code-generation and tuning,” in
Workshop on Domain-Specific Languages and High-Level Frameworks
for HPC (WOLFHPC), 2016, pp. 30–39.

[37] M. Christen, O. Schenk, and Y. Cui, “Patus for convenient
high-performance stencils: evaluation in earthquake simulations,” in
Conference on High Performance Computing Networking, Storage and
Analysis (SC), 2012, p. 11.

[38] D. Guerrera, H. Burkhart, and A. Maffia, “Reproducible experiments in
parallel computing: Concepts and stencil compiler benchmark study,” in
Euro-Par 2014: Parallel Processing Workshops, 2014, pp. 464–474.

[39] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the
multiarmed bandit problem,” Machine Learning, vol. 47, no. 2, pp.
235–256.

[40] S. Muralidharan, M. Shantharam, M. Hall, M. Garland, and B. Catan-
zaro, “Nitro: A framework for adaptive code variant tuning,” in IEEE
International Parallel and Distributed Processing Symposium (IPDPS),
2014, pp. 501–512.

[41] M. Stephenson and S. P. Amarasinghe, “Predicting unroll factors using
supervised classification,” in IEEE / ACM International Symposium on
Code Generation and Optimization (CGO), 2005, pp. 123–134.

[42] K. Stock, L.-N. Pouchet, and P. Sadayappan, “Using machine learning
to improve automatic vectorization,” ACM Trans. Archit. Code Optim.,
vol. 8, no. 4, pp. 50:1–50:23, Jan. 2012.

[43] T. Joachims, “Training linear SVMs in linear time,” in ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining
(KDD), 2006, pp. 217–226.

[44] ——, “Optimizing search engines using clickthrough data,” in ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD), 2002, pp. 133–142.

[45] G. H. Bakir, T. Hofmann, B. Schölkopf, A. J. Smola, B. Taskar, and
S. V. N. Vishwanathan, Predicting Structured Data (Neural Information
Processing). The MIT Press, 2007.

[46] D. H. Wolpert and W. G. Macready, “No free lunch theorems for
optimization,” Trans. Evol. Comp, vol. 1, no. 1, pp. 67–82, Apr. 1997.

[47] M. Gendreau and J.-Y. Potvin, Handbook of Metaheuristics, 2nd ed.
Springer Publishing Company, Incorporated, 2010.

[48] M. Kendall, Rank Correlation Methods, 4th ed. Hodder Arnold, 1976.


