
Eurographics Italian Chapter Conference (2008)
V. Scarano, R. De Chiara, and U. Erra (Editors)

A Survey on Exploiting Grids for Ray Tracing

Biagio Cosenza

ISISLab, Dipartimento di Informatica ed Applicazioni “R.M. Capocelli”
Università degli Studi di Salerno, Italy

cosenza@dia.unisa.it

Abstract

Grid is one of the first data structure introduced at the very beginning of computer graphics. Grids are used

in several applications of computer graphics, especially in rendering algorithms. Lately, in ray tracing dynamic

scenes, grid has received attention for its appealing linear time building time. In this paper, we aim to survey

several aspects behind the use of grids in ray tracing. In particular we investigate grid traversal algorithms,

building techniques and several approaches for hierarchical grids.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and Tech-
niques: Graphics data structures and data types I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Re-
alism: Ray tracing.

1 Introduction

Several works (e.g., [Hav00]) have showed the significance
of data structures for rendering algorithms and in particular
for ray tracing [Whi80]. Ray tracing is a widely used algo-
rithm for rendering images aiming at an high realism. Ray
tracing requires a big amount of computational power and
therefore, a lot of research has been proposed to speed up
ray tracing algorithm by using additional acceleration data
structures, such as grids, octrees, bounding volume hierar-
chies, or kd-trees (see [Hav00]). In particular it has been
showed that, in a general kd-tree implementation for static
scenes, about 60% of time in ray tracing algorithm is spent
in tree traversal [Wal06].

Although, ray tracing used to be considered not suitable
for interactive applications, recently, several works [Wal06,
RSH05, BSW06] have showed that it is possible to achieve
interactive performance, at least for static scene, by using
several traversal optimization, such as packet and frustum
traversal.

The choice for a efficient data structure become quite in-
tricate if one has to consider dynamic scenes. In that case
not only traversal time, but also building and updating time,
have to be considered in the choice of the acceleration data
structure. Indeed, as showed in [WMG∗07], ray racing of
dynamic scenes has shifted the attention from traversal time
to build and update time.

In this context, grid data structures [Gla84] becomes
an appealing data structure: although kd-trees outperforms
grids with respect traversal time, they are not suitable for dy-
namic scenes, due to their high cost of rebuilding/updating.

As an example, the surface area heuristics, required to build
fast-traversal kd-trees [WH06], may require seconds to min-
utes to build a kd-tree for quite complex scenes. There-
fore kd-trees can be efficiently used only for static scenes.
This restriction limits the utility of kd-tree, as data struc-
ture for ray tracing, for many interactive scenarios, such as
visual simulation, animations, and interactive games. While
some efforts have focused on extending kd-trees to dynamic
scenes [WMG∗07], from the best of our knowledge, they are
limited to hierarchical motion or require advance knowledge
of the scene, and therefore they are unsuitable for pure dy-
namic animations that require unstructured motion.

Grid data structures, introduced by [Gla84], divides the
scene-space in uniform voxel spaces. In contrast with kd-
trees and other adaptive data structures, due to their lin-
ear time build algorithm, grids can be created from scratch
and updated at every frame with interactive performance
[RSH00] (at least for moderate sized scenes). Consequently,
even if grids provide higher traversal time than kd-trees, they
have been considered attractive for dynamic scenes because
of theirs faster building time.

Grid data structures are popular not only for rendering an-
alytical objects of a scene, but also for different scenarios
such as particle-based simulations, computational fluids dy-
namics and volume rendering .

Assumptions on grid. Formally, a grid is a spatial data
structure that divides the scene-space in constant size voxels,
named cells. We assume to have a cubic main voxel that rep-
resents the whole scene. A grid equally subdivides the main
voxel along each dimension. Therefore, a grid can be seen as

c© The Eurographics Association 2008.

http://www.eg.org
http://diglib.eg.org


Biagio Cosenza / A Survey on Exploiting Grids for Ray Tracing

a collection of M = m3 cubic grid cells, where m is the num-
ber of grid cells in one dimension. Whereas the main scene
voxel is not cubic, we can still subdivide the main voxel in
cubic voxels using a different number of grid cell for each
dimension. We have M = mx ·my ·mz where mx, my and mz

represents the number of grid cells for each dimension.
Each cell is associated to a subset of the primitives that de-
scribes the scene. Of course, a primitive can fill more than a
cell.

2 Traversal algorithms

In ray tracing, a traversal algorithm for a grid return all the
voxels (cells) traversed by the ray. Formally, starting from a
parametric representation of a ray f (t) = ~o + t · ~d where ~o
and ~d are the origin and direction vector, a traversal algo-
rithm returns all the cells traversed by the ray. An interval
[tmin, tmax) (usually [0,+∞)) is associated to a ray, and only
intersections within this interval are considered. Since we
are looking for the closest primitive intersection, grid traver-
sal stops as soon as an intersection is found.
Traversal algorithms in grid are similar to rasterization. Bre-
senham 2D line rastering algorithm [Bre65], for example,
produce visually acceptable rasterized line in the shortest
time. However, it does not find all the pixels traversed by the
line segment. Therefore a naive 3D extension of Bresenham
algorithm is not suitable as a grid traversal algorithm.

Figure 1: (left) Bresenham cells. (right) Traversed cells.

Traversal algorithm can be classified with respect of sev-
eral aspects.

Discrete integer traversal. A traversal algorithm generate
a sequence of cell traversed by a ray directly. We can dis-
tinguish integer based algorithms, which assume that each
ray has a start and an end point, referred with integer coor-
dinates, (which corresponds to the first and the last cell to
visit). On the other hand, there are algorithms where rays
have a starting point and direction expressed with floating
point variables [Sra95]. In the latter case one has to pay at-
tention to the precision, reducing the numerical errors to the
minimum.

Ray aggregation strategies: exploiting spatial coherence.

Ray tracing methods usually use a geometric representa-
tion of the 3D scene. Each geometric primitive supported
by a ray tracer implements a ray-primitive intersection al-
gorithm, and the purpose of the acceleration data structure
(such as grid) is to minimize the number of intersection tests
required.
Recently, an important class of techniques exploit spatial co-
herence to provide fast traversal performance. For example
in grids, close rays go through similar path of cells. This

coherence is effective especially for primary eye rays, hard
shadow rays, soft shadow rays and many other kind of sec-
ondary rays. There are two main strategies to exploit this
coherence:
Ray aggregation, where a group of rays is traced as a single
unit (a packet), and
Beam tracing, where rays are considered only in a final step.
The first strategy is the most used by current interactive
systems. It is used with several data structures (i.e., kd-
tree [Wal06]), allows the use of register SIMD to process
four rays in bundle, and can be combined with frustum- and
interval- arithmetic techniques to avoid traversal steps and
intersection tests by exploiting conservative bounds of the
group of rays [RSH05].
Beam strategies does not represents explicitly rays until a
final sampling step. Overbeck et al. showed that beam trac-

ing is competitive with frustum based tracers, at least for
eyes and shadow rays [ORM07]. However, this work fo-
cus on a kd-tree based data structure and, from the best of
out knowledge, there are no known implementations of grid
based beam tracer.

Traversal time. Traversal algorithm should be fast. A com-
mon cost model used for grid supposes that is possible to
identify, for each algorithm, two constants [ISP07]:
Tsetup : time to setup traversal algorithm;
Tstep : time spent to advance from a cell to its neighbor

(without checking intersection).
The performance of a traversal algorithm depends directly
from this two conflictual values. For example, an algorithm
having a low Tsetup usually performs better for low resolu-
tion grids, whereas an high Tstep provide bad performance
for larger grids.

2.1 Single ray traversal

Several grid traversal algorithms have been historically de-
veloped to determinate the cells traversed by a ray in a
grid. Algorithms for grid traversal are quite similar to ras-
terization algorithms (such as Bresenham line draw algo-
rithm [Bre65]). Many three dimensional traversal algorithms
can be directly derived from an equivalent line drawing algo-
rithm. Indeed, most of them are variants of the Digital Dif-
ferential Analyzer (DDA).
We are going to give a brief outline of the most important
grid traversal algorithms. Our analysis will focus in the two
dimensions case. Anyway, extensions to three dimensional
space is usually simple and straight.

Cleary and Wyvill algorithm [CW88]. Cleary and Wywill
showed that the next cell calculations can be done in two or
three integer operations. We henceforth indicate with verti-
cal (resp. horizontal) walls the vertical (resp. horizontal) axis
belonging to the grid. When a ray enters in a new cell, it can
traverse an horizontal wall (i.e., from the bottom to the top)
or a vertical wall (i.e from left to right). Considering only
the passage through vertical walls, let δx the distance along
the ray between such crossings. Similarly, δy is the constant

c© The Eurographics Association 2008.

90



Biagio Cosenza / A Survey on Exploiting Grids for Ray Tracing

distance between successive crossings of horizontal walls.
In order to find the cell traversal order, we need to determi-
nate the sequence of crossing type (horizontal or vertical).
This can be done by keeping two variables, dx and dy, which
record the total distance along the ray, from the origin to the
next crossing of a vertical or horizontal wall respectively. If
dx < dy, then the next crossing is over a vertical wall, and the
next cell is the horizontal neighbor cell (see Figure 2). De-
terminated the next cross type, traversal algorithm update dx

(dx = dx−δx). Similar operations are done on dy if dx > dy.
Extending the algorithm to the three dimensions simply re-
quires the addition of the appropriate dz and δz variables,
and finding the minimum of dx, dy and dz at each step.

Figure 2: An example of Amanatides and Woo traversal algorithm
with the corresponding cell traversal order. The Figure shows dx and
dy after traversing the third cell.

Figure 3: Bresenham (left) and Liu (right) thresholds.

Amanatides and Woo algorithm [AW87]. Amanatides and
Woo traversal algorithm differs from Cleary and Wywill’s al-
gorithm because it is based on floating point values. Starting
from the parametric equation of the ray, with t ≥ 0, the algo-
rithm breaks down the ray into intervals of t, each of which
spans one cell. The floating point variable dx (dy) represents
the value of the parameter t where the ray hit the horizontal
(vertical) wall. If the ray direction is normalized, dx (dy) is
also the distance from origin to the wall hit point. the three
dimensional version of this traversal algorithm requires, in a
traversal step, only two comparisons and one addition (float-
ing point operations).

Modified Bresenham algorithms. As discussed above,
standard Bresenham line drawing does not consider all the
cells traversed by a ray [Bre65]. Indeed, chosen the driving
axis, e.g., the x axis and starting from the cell (x,y), Bresen-
ham’s algorithm choices only one cell between (x+1,y) and
(x+1,y+1), never both.
Zalik et al. solve this problem proposing a code-based traver-
sal algorithm [ZCO97]. This algorithm has two phases: first
it determines the cells traversed by Bresenham’s algorithm;
then it examines the relationship between two successive cell

to determinate the remaining cells. However, this approach
has some drawbacks: a higher traversal time and an elabo-
rate implementation.
A more efficient extension of Bresenham algorithm is pro-
posed by Liu et al. [LZY04]. Bresenham’s algorithm, chosen
the driving axis, at each step selects a cell to traverse. The
error e tells the difference between the chosen integer cell
and the real coordinate of the line. The error e is compared
against a threshold (1/2 in Bresenham) and then a cumula-
tive value of the line segment slope is computed(e = e + k

and k = dx/dy).
Liu extension, instead, determines the intersection point of
the line with the two walls, and then compare the error e

against a threshold = 1
2 −

dy
2dx . If e is greater than the thresh-

old, both (x + 1,y) and (x + 1,y + 1) are visited. Thereafter,
following the Bresenham approach, the algorithm is adjusted
to integer arithmetic. The three dimensional case is quite
similar, and identify two possible paths from the cell (x,y,z)
to (x+1,y+1,z+1) (cfr. [LZY04]). Liu algorithm is faster
even on modern processors, where floating point arithmetic
is almost as efficient as integer arithmetic.

Other approaches. Line drawing algorithms raised histor-
ically a lot of interest by the Computer Graphics research
community, and several approaches and solutions have been
proposed.
For example, in symmetric algorithms (see [Wyv90]): since
lines are symmetric around the center, it is possible to draw
two (symmetric) pixel at time. Notice that, in symmetric al-
gorithms, the traversal algorithms starts from the midpoint
(pixel) and go trough the two outermost points, or viceversa,
starts from the outermost pixels and go trough the midpoint,
whereas, in general, traversal algorithm start from the origin
and eventually stop when an intersection is found.
Other line drawing algorithms use several patterns to draw
more pixels at once. For example, instead of draw a pixel
at once, they draw a pattern of three pixels, taken by four
different precomputed patterns [Wyv90]. From the best of
our knowledge, uses and benefits of symmetric and pattern-
based algorithms, in the context of grid traversal, are not in-
vestigated yet.
3D Digital Differential Analyzer (3DDDA) traversal is ap-
plicable for several data structure traversal algorithms. An
interesting view of 3DDDA issue is done by Fujimoto et al.
[FTI]. They provides an environment for ray tracing named
SEADS. The paper analyzes uniform grids, but it also dis-
cusses the traversal algorithm for octrees. They argue that
3DDDA traversal algorithm for octrees is not as efficient as
expected. They discuss the 3DDDA octree traversal in de-
tails and compare it with the uniform grid 3DDDA traversal.
They also provides experimental results that show that uni-
form grid 3DDDA traversal is faster than Glassner octree
traversal [Gla84].

2.2 Group of rays traversal

Unfortunately, 3DDDA like algorithms used for single ray
grid traversal can not be easily improved using standard

c© The Eurographics Association 2008.

91



Biagio Cosenza / A Survey on Exploiting Grids for Ray Tracing

Figure 4: Traversal technique strategies: (left) single step , (center) pattern based , and (right) slice by slice.

traversal optimization techniques (such as packet and frus-
tum traversal). The main issue of extending traversal from
a single ray to a group of rays concerns about the cell tra-
versed by a group of rays. If the path of two close rays is
quite similar, they can differs in a restricted number of cell
that a ray traverses and another does not. Single ray algo-
rithm can chose only one cell at a time to step into, whereas
different rays can disagree on the next cell to be traversed.
A naive solution to this problem is to split rays in differ-
ent sub-packets with the same traversal decision. However,
rays that have diverged in a cell (and then are split in differ-
ent sub-packets) may traverse other common cells later on.
This loose of coherence can be avoided by re-merging sub-
packets. Nevertheless, splitting and merging packets of rays
are expensive operations and thus, this can not be a practical
solution.

Slice by slice algorithm. Ize. et al. [WIK∗06] have solved
this problem by abandoning 3DDDA like algorithm in fa-
vor of a new slice by slice traversal algorithm for group of
rays. The algorithm, known as CGT (Coherent Grid Traver-
sal), traverse the grid slice by slice rather than cell by cell,
avoiding expensive merge and split operations.

The algorithm, given a set of coherent rays (rays that
spans an angle of less than π/2), computes the packet’s
bounding frustum that is traversed through one slice at a
time. The major dominant axis is taken by selecting the dom-
inant component of the direction of the first ray, and the re-
maining two dimensions determinates the slices. For each
slice, a incrementally frustum’s overlap with the slice is per-
formed, which determinates the cells actually overlapped by
the frustum. Each ray packet have four corner rays which
defines the frustum boundaries. An important feature is that
frustum traversal step can be done efficiently by using SIMD
instructions.

Although the number of overall ray-primitive intersection
test can be higher, because the packet can traverse cells that
some rays does not intersect, in practice ray coherence easily
compensate this overhead.

Ize et al. also extends this algorithm to hierarchical grids.
They show significant test results in dynamic scenes, and
competitive with Intel MLRT System based on kd-tree for
static scene (actually the best known for static scenes)
[RSH05]. An interesting consideration about CGT concerns
about scalability with screen resolution. Since higher resolu-
tions enable larger packets, we generally see sublinear scal-
ing in screen resolution.

3 Building algorithms

Ize et al. [ISP07] defines a general approach to build flat
grids: based on some assumption on geometry distribution
they provides good estimation for grid resolution. Further-
more, the also shows a theoretical analysis for hierarchical
grids. The analysis focus on two kind of scene models, the
first one assumes that compact triangles are comparable to
points while the second considers long-skinny triangles as
lines. An interesting property of grids is that the building
process is easy to parallelize [IWRP06].

In the following we consider a cubic main voxel con-
taining N geometric primitives describing the scene, and a
given value for m. Two building algorithms have been pro-
posed [IWRP06]:
Sort-last building algorithms: for each primitive p, the al-

gorithm determinates the grid cells which contains p or a
portion of p;

Sort-first building algorithms: for each grid cell g, the al-
gorithm determinates the primitives which have a non-
empty intersection with g.
In this papers we refers to sort-last building algorithms

as general grid building algorithm. The algorithm can use an
exact test or a faster but imprecise axis aligned bounding box
test. The latter is preferred in the context of interactive real
time environments.
Algorithm 1 A general grid building algorithm

1: m← determinatem()
2: split grid in m3 cells
3: for all primitive p ∈ scene do

4: box← p.boundingBox

5: insert p in grid cells from box.min to box.max

6: end for

A general method, to build grids, is shortly summarized
in the algorithm determinatem (see Algorithm 1).

If we suppose that each primitive covers a constant num-
ber of grid cells and assuming that determinatem is O(N),
then one can easily verify that the building algorithm has
linear time complexity.

3.1 Grid building: preliminaries

In the following we will give some basic assumptions: We
assume that rays are uniformly distributed in the space,
hence each cell has the same probability to be reached by
a ray. A similar assumption is done by Surface Area Heuris-
tic (SAH) heuristics; we assume to have a single ray 3DDDA
like traversal algorithm, and that it is possible to determinate
the time required by atomic operations:

c© The Eurographics Association 2008.

92



Biagio Cosenza / A Survey on Exploiting Grids for Ray Tracing

Tsetup: time to do the initial intersection with main voxel
bounding box and setup traversal;

Tstep: time spent to advance from a cell to its neighbor
(without checking intersection);

Tinter: time required to check a ray-primitive intersection.
We also suppose that each primitive covers a bounded

number of grid cells. In the following we denote by Nm the
number of intersections between primitives and cells for a
given subdivision factor m. The number of cells covered by
a primitive depends by the scene model considered. For in-
stance, if the model is based on lines, a primitive covers
roughly m cells (Nm ≈ N ·m), where in a point-based model
a primitive covers exactly 1 cell (Nm ≈ N).

3.2 A traversal time cost-based model

In this section we shift out attention in the choice of the sub-
division resolution. We will show that this problem is not
trivial and it is strongly influenced by the scene model. The
choice of the subdivision factor (i.e., m) affects traversal time
and memory space occupation.

Defining a traversal time cost based approach, during the
building phase, is a common approach in ray tracing.

In particular, in the context of the kd-tree building, split
planes are chosen by using a Surface Area Heuristic (SAH)
in order to evaluate possible candidate planes. However, ex-
act SAH build algorithms have O(n logn) time complex-
ity, which is considered too high for interactive purpose.
A first complete cost model for grid has been introduced
in [CW88].

Ize et al. [ISP07] introduced a clear and simple cost model
for grid. Following the above assumptions, a ray reaches m

cells on average. The average traversal time T , in a flat grid
is:

T = Tsetup +mTstep +µTinter

where µ = Nm/m2 is the average number of primitives con-
tained (or partially contained) in m cells.

The value of T strongly depends on the scene model, on
the value of the subdivision factor m and on primitives cell
occupation (Nm).

In point based models, each primitive is contained in ex-
actly one cell (i.e.,Nm = N), and therefore each cell con-
tains N/m3 primitives on average. Since, we are looking
for the number of primitives contained in m cells, we have
µm = N/m2. On the other hand, considering line based mod-
els, each primitive is partially contained into m cells (Nm =
N ·m), hence µm = N/m.

If we have enough information about the scene model, it
is possible to determinate the value of m which minimizes
T [ISP07]. In particular, if we consider point based models,
then†

M = N ·
2Tinter

Tstep
= O(N). (1)

† We recall that Tinter and Tstep are constant.

For line based models

M =

(

N ·
Tinter

Tstep

)
3
2

= O(N1.5). (2)

Commonly used models behave between this two opposite
ones. Anyway, there is a remarkable asymptotic difference
between the two models. Nevertheless, the use of these the-
oretical results requires a knowledge of scene model type.

Mailboxing. Mailboxing [AW87] is a common technique
that avoid multiple identical ray-primitive intersection tests.
A revised approach that include mailboxing requires to re-
define Nm as the average number of distinct primitives con-
tained (or partially contained) in m cells. For sake of sim-
plicity we do not consider this approach in this cost-based
model.

3.3 Choosing the resolution

The choice of m is fundamental in traversal performance. Ize
et al. [ISP07] work requires an a priori estimate of models
occupation.
It is possible to determinate an exact value of Nm for a given
m by performing a primitive counting during the building.
This means that, for a given m, it is possible to evaluate
Nm in linear time. A guess and check building algorithm can
test several value of m in linear time and then select the one
which minimize the cost function T . The theoretical analysis
give us a bounded interval where look for a good value of m.
As an example, assuming that Tsetup ≈ 1.0,Tstep ≈ 0.1 and

Tinter ≈ 0.5, then m ∈

[

(10N)
1
3 ,5N

3
2

]

.

Sampling-based building algorithm. The idea of guess and
check algorithms is to sample the cost function in order to
build a efficient grid. This idea is not new. For example,
in the context of SAH kd-tree build [WH06], Popov et al.
[PGSS06] provide theoretical and practical results regarding
conservatively sub-sampling of the SAH cost function in kd
tree. Hunt et al. [HMS06] define an adaptive error-bounded
heuristic based on a scanning-based algorithm for choosing
kd-tree split planes that are close to optimal with respect to
the SAH criteria. Similar works exploit SAH build in other
data structures such as BVH.

Notice that our cost based grid building is a SAH algo-
rithm, where a grid resolution is weighted using the number
of primitive contained in a cell. Because grid cells are vox-
els having all the same surface area, the probability that a
ray hits a cell is equal for all the cells. Where in kd tree SAH
heuristic evaluates the cost of a plane candidate, instead in
grid we evaluate a cost of a grid resolution (our m).

In this context we can use theoretical results to bound
sampling and evaluate the cost function for several values

of m (in our case m ∈

[

(10N)
1
3 ,5N

3
2

]

). A naive approach

can sample this interval in a constant number of points, se-
lecting the resolution in linear time. Hence we have a linear
overall building time.

c© The Eurographics Association 2008.

93



Biagio Cosenza / A Survey on Exploiting Grids for Ray Tracing

4 Hierarchical grids

One of the most issues on designing a grid is that it lacks
to adapt on geometry distribution. Adaptive subdivision of-
ten works better for complex scenes with uneven geometry
distribution, but generally are harder to build. Hierarchical
grids (see e.g. [RSH00]) overcome this problem by using a
recursive data structure. They provide a trade-off between
traversal and building time. There are several ways to build
hierarchical grids. The main idea is to subdivide some re-
gions of space finer than others, and thus quickly traverse
empty spaces

We are going to give a brief outline of the most important
ways to build hierarchical grid.

Loosely nested grids. Cazals et al. [CDP95] proposes a hier-
archical grid building which is able to handle very complex
scene. In particular they propose a four step algorithm:
• organizes primitives of the scene in subset of similar size;
• for each group of primitives, group the neighbors into

clusters;
• construct a grid for each cluster;
• construct a hierarchy of these grids.
The proposed data structure can be seen as a loosely nested
recursive grid. Filtering and clustering steps effect a bottom-
up construction, in strong constrast with all other methods
that subdivide their structure adaptively in a top-down man-
ner.

Klimaszewski and Sederberg [KS97] propose an adaptive
grid data structure. They suggest to build local grids that acts
as a bounding box in densely populated areas. They use a fast
bottom-up building algorithm:
• for each primitive, surrounds it with a bounding box (un-

structured grids);
• for all bounding boxes, merge close boxes (structured

grid);
• for all remaining boxes, insert the box into tree using a

minimum surface criterion;
• for all bounding boxes in hierarchy, build a local grid.
Again, this data structure can be seen as a loosely nested
recursive grid.

Both works seem to have a greater build cost against gen-
eral bottom-up strategies.

Multi-resolution grids. Jevans and Wyvill [JW89] illus-
trates a recursive hierarchical subdivision algorithm for
grids. All the primitives are initially inserted into a single
voxel. Thera are two kind of voxel: leaf voxel, which con-
tains a list of objects inside that voxel and internal voxel,
which maintains a voxel grid subdivision. They use an
hashtable which maintains each non-empty internal voxel.
They propose several build methods:
• octree like, setting the size of voxel grids to 2 on a side;
• setting a maximum depth of the subdivision tree;
• fixing the resolution of the voxel subgrids to a constant

value;

• variable (adaptive) voxel resolution.
Notice that build approach is top-down This integration of
regular and adaptive spatial subdivision methods allows im-
ages consisting of large regularly distributed objects and
small dense objects to be ray traced efficiently. The param-
eters controlling the coarseness of the voxel grid, depth of
adaptive subdivision trees, and maximum number of poly-
gons per voxel are tailored and their effects on execution
time, subdivision time, and memory use are measured.

Macrocell or multigrids. Parker et al. [PPL∗99] use a sim-
ple hierarchical optimization to a base uniform grid, called
macrocell. Macrocells superimpose a second, coarser grid
over the original fine grid, such that each macrocell corre-
spond to an AxAxA block of original grid cells. Each macro-
cell stores a boolean flag specifying whether any of its corre-
sponding grid cells are occupied. Parker also organizes cell
in bricks to improve locality. Build process is top-down, sim-
ilar to multi-resolution grids.

Other works address the problem of adaptivity with dif-
ferent solutions. For example, in proximity clouds [CS94], a
ray traversing empty space is assisted by the distance values
which permit to perform long skips along the ray direction.

Cost model suggests a way to build hierarchical grid and
in particular to determinate a termination criteria to stop re-
cursion. For example, if Tsetup + mTstep + µTinter > NTinter,
then recursion introduce a benefit in grid traversal time (see
Subsection 3.2). However it is worth noting that, without us-
ing a good indexing strategy (such as Jevans and Wyvill hash
table [JW89]) is not possible use to deep levels of recursion.

5 Hardware architectures considerations

The current trend in CPU and GPU hardware design is to-
wards three concepts: a streaming compute model, vector-
like SIMD units, and multi-core architectures. These new ar-
chitectures combines more and more parallel computations,
indeed fast local computations and slow memory access
time. This leads to favor method that reduces memory ac-
cesses (i.e. compact data structure, compression, multireso-
lution ...), maximize local memory accesses, and can be eas-
ily parallelized, especially in SIMD/MIMD setting. For ex-
ample memory layouts (i.e. bricking [PPL∗99]) should have
big and bigger importance in order to improve the perfor-
mance. This is also more important for the streaming com-
pute model supported by nowadays hardwares.

Moreover, the current trend is to implement rendering
methods on GPUs. However, GPU presents some limita-
tions. For example, fragment programs are not allowed to
perform data depending branching and have a more re-
stricted memory access (i.e. the number of level of de-
pendent texture fetch is limited). Purcell et al. [PBMH02]
showed that is possible to do ray tracing with programmable
graphics hardware. Further works have been made by us-
ing different data structure such as kd-tree or BVH. Results
showed that ray tracing so far does not fully utilize GPU.

c© The Eurographics Association 2008.

94



Biagio Cosenza / A Survey on Exploiting Grids for Ray Tracing

The traversal algorithm is unsuited for GPU computation,
and branching is unavoidable.Today, for ray tracing, CPUs
seem to be more suitable than GPUs.

6 Conclusion

This paper presents a survey on algorithms used in ray trac-
ing by using grid data structure.

Several aspects have been examined: how to efficient
traverse a grid, building methodology and their impact in
traversal algorithms, how it is possible to exploit adaptivity
in grid by building nested hyerarchical grid.

We believe that two main trends will drive research in this
data structure. The first is the need of rendering dynamic
scenes, because faster grid build time. The latter is the up-
raise of parallel hardware, because of the easy paralleliza-
tion.

References

[AW87] AMANATIDES J., WOO A.: A fast voxel traversal algo-
rithm for ray tracing. In Eurographics ’87 (Aug. 1987), pp. 3–10.

[Bre65] BRESENHAM J.: Algorithm for computer control of a
digital plotter. IBM Systems Journal 4, 1 (1965), 25–30.

[BSW06] BOULOS S., SHIRLEY P., WALD I.: Geometric and

Arithmetic Culling Methods for Entire Ray Packets. Tech. rep.,
University of Utah, SCI Institute, 2006.

[CDP95] CAZALS F., DRETTAKIS G., PUECH C.: Filtering, clus-
tering and hierarchy construction: a new solution for ray tracing
complex scenes. Computer Graphics Forum 14, 3 (1995).

[CS94] COHEN D., SHEFFER Z.: Proximity clouds – an acceler-
ation technique for 3d grid traversal. Vis. Comput. 11, 1 (1994),
27–38.

[CW88] CLEARY J. G., WYVILL G.: Analysis of an algorithm
for fast ray tracing using uniform space subdivision. The Visual

Computer 4, 2 (July 1988), 65–83.

[FTI] FUJIMOTO A., TANAKA T., IWATA K.: Arts: Accelerated
ray-tracing system. IEEE Computer Graphics & Applications.

[Gla84] GLASSNER A. S.: Space subdivision for fast ray tracing.
IEEE Computer Graphics & Applications 4, 10 (Oct. 1984), 15–
22.

[Hav00] HAVRAN V.: Heuristic Ray Shooting Algorithms. Ph.d.
thesis, Department of Computer Science and Engineering, Fac-
ulty of Electrical Engineering, Czech Technical University in
Prague, November 2000.

[HMS06] HUNT W., MARK W. R., STOLL G.: Fast kd-tree con-
struction with an adaptive error-bounded heuristic. In 2006 IEEE

Symposium on Interactive Ray Tracing (Sept. 2006).

[ISP07] IZE T., SHIRLEY P., PARKER S. G.: Grid Creation
Strategies for Efficient Ray Tracing. In IEEE/EG Symposium on

Interactive Ray Tracing (Sept. 2007), pp. 27–32.

[IWRP06] IZE T., WALD I., ROBERTSON C., PARKER S. G.:
An Evaluation of Parallel Grid Construction for Ray Tracing Dy-
namic Scenes. In Proceedings of the 2006 IEEE Symposium on

Interactive Ray Tracing (2006), pp. 27–55.

[JW89] JEVANS D., WYVILL B.: Adaptive voxel subdivision for
ray tracing. In Graphics Interface (June 1989), pp. 164–172.

[KS97] KLIMASZEWSKI K. S., SEDERBERG T. W.: Faster ray
tracing using adaptive grids. IEEE Comput. Graph. Appl. 17, 1
(1997), 42–51.

[LZY04] LIU Y. K., ZALIK B., YANG H.: An integer one-
pass algorithm for voxel traversal. Comput. Graph. Forum 23,
2 (2004), 167–172.

[ORM07] OVERBECK1 R., RAMAMOORTHI1 R., MARK W. R.:
A Real-time Beam Tracer with Application to Exact Soft Shad-
ows. In Eurographics Symposium on Rendering (2007).

[PBMH02] PURCELL T. J., BUCK I., MARK W. R., HANRA-
HAN P.: Ray tracing on programmable graphics hardware. ACM

Transactions on Graphics 21, 3 (July 2002), 703–712.

[PGSS06] POPOV S., GÜNTHER J., SEIDEL H.-P., SLUSALLEK

P.: Experiences with streaming construction of SAH KD-trees.
In Proceedings of the 2006 IEEE Symposium on Interactive Ray

Tracing (Sept. 2006), pp. 89–94.

[PPL∗99] PARKER S., PARKER M., LIVNAT Y., SLOAN P.-P.,
HANSEN C., SHIRLEY P. S.: Interactive ray tracing for volume
visualization. IEEE Transactions on Visualization and Computer

Graphics 5, 3 (July/Sept. 1999), 238–250.

[RSH00] REINHARD E., SMITS B., HANSEN C.: Dynamic ac-
celeration structures for interactive ray tracing. In Eurographics

Workshop on Rendering (2000), pp. 299–306.

[RSH05] RESHETOV A., SOUPIKOV A., HURLEY J.: Multi-level
ray tracing algorithm. ACM Transactions on Graphics 24, 3
(Aug. 2005), 1176–1185.

[Sra95] SRAMEK M.: A comparison of some ray tracing gener-
ators for ray tracing volumetric data. In The Third International

Conference in Central Europe on Computer Graphics and Visu-

alization 1995 (1995), pp. 466–475.

[Wal06] WALD I.: Realtime Ray Tracing and Interactive Global

Illumination. PhD thesis, Computer Graphics Group, Saarland
University, Saarbrücken, Germany, 2006.

[WH06] WALD I., HAVRAN V.: On building fast kd-trees for ray
tracing, and on doing that in O(N log N). In Proceedings of the

2006 IEEE Symposium on Interactive Ray Tracing (2006).

[Whi80] WHITTED T.: An improved illumination model for
shaded display. Communications of the ACM 6, 23 (1980), 343–
349.

[WIK∗06] WALD I., IZE T., KENSLER A., KNOLL A., PARKER

S. G.: Ray tracing animated scenes using coherent grid traversal.
ACM Transactions on Graphics 25, 3 (July 2006), 485–493.

[WMG∗07] WALD I., MARK W. R., GÜNTHER J., BOULOS S.,
IZE T., HUNT W., PARKER S. G., SHIRLEY P.: State of the Art
in Ray Tracing Animated Scenes. In Eurographics 2007 State of

the Art Reports (2007).

[Wyv90] WYVILL B.: Symmetric double step line algorithm.
Graphics gems (1990), 101–104.

[ZCO97] ZALIK B., CLAPWORTHY G., OBLONSEK C.: An ef-
ficient code-based voxel-traversing algorithm. Comput. Graph.

Forum 16, 2 (1997), 119–128.

c© The Eurographics Association 2008.

95



Biagio Cosenza / A Survey on Exploiting Grids for Ray Tracing

Figure 5: Impact of resolution in four test scenes: two scanned models, an architectural model, a particle-based model. Of the two theoretical
model, our test suggest that real world scene are closer to point instead line model. In particular, particle based scenes are less sensitive to the
choice of resolution. As expected, architectural model have an higher traversal cost.

c© The Eurographics Association 2008.

96


