
Eurographics Italian Chapter Conference (2008)

V. Scarano, R. De Chiara, and U. Erra (Editors)

On Estimating the Effectiveness of Temporal and Spatial

Coherence in Parallel Ray Tracing

Biagio Cosenza1 and Gennaro Cordasco1 and Rosario De Chiara1 and Ugo Erra2 and Vittorio Scarano1

1ISISLab, Dipartimento di Informatica ed Applicazioni “R.M. Capocelli”, Università di Salerno, Salerno, Italy

{cosenza, cordasco, dechiara, vitsca}@dia.unisa.it

2Dipartimento di Matematica e Informatica, Università della Basilicata, Potenza, Italy

ugo.erra@unibas.it

Abstract

In this paper we estimate the effectiveness of exploiting coherence in Parallel Ray Tracing. We present a load-

balancing technique which divides the original rendering problem in balanced subtasks and distribute them to

independent processors through a Prediction Binary Tree (PBT). Furthermore the PBT allows to exploit temporal

coherence among successive image frames. At each new frame, it updates the current PBT using a cost function

which uses the previous rendering time as cost estimate. We also provide two heuristics which take advantage of

data-locality.

We assess the effectiveness of the proposed solution by running two experiments. The £rst one aims to investigate

the accurancy of predictions made using the PBT. Results show that such predictions are quite accurate even

considering a heavily unbalanced scene and a fast moving camera. The second experiment evaluates the two

locality-aware heuristics showing a modest improvement.

Categories and Subject Descriptors (according to ACM CCS): C.1.4 [Processor Architectures]: Parallel Architectures

I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism.

1. Introduction

Ray Tracing. Ray Tracing [Whi80] is a widely used algo-

rithm for rendering images aiming at an high realism. It is

the core technique underlying several global illumination al-

gorithms. The input for ray tracing is a scene description that

speci£es the geometry of objects together with the de£nition

of every object materials, position/orientation of the lights.

The output is an image of the scene as seen through a virtual

camera.

For sake of clarity we will shortly summarize the ray trac-

ing algorithm. For each pixel (x,y), in the £nal image, a

ray is casted from the virtual camera through the scene, it

is called primary ray. If exists, the £rst object is determi-

nate. Based on the intersection point, the surface proper-

ties, the position and the color of lights, the light intensity

at the intersection point is computed. In the Whitted-style

ray tracing [Whi80] the ray can be re¤ected and/or refracted

according to surface properties and the process is repeated

recursively with these new rays. Instead, in advanced global

illumination algorithms, as for instance in Rendering algo-

rithm based on Monte Carlo approach [Shi96], several child

rays have to be traced in order to compute an average of their

contributions. At the end, the process adds the light intensi-

ties at all intersection points in order to get the £nal color of

the pixel. Then, it is quite obvious that ray tracing require a

certain computational power which is directly related to the

amount of light rays as they bounce around the scene.

Coherence in Ray Tracing. Due to its high computational

cost, researchers have been looking for improving the per-

formance of ray tracing [Wal04,RSH05]. Much research has

focused on fast acceleration structures and their traversal

algorithms, intersection algorithms, shading models, sam-

pling techniques. In particular, the bottleneck of ray tracing

algorithm has been located in memory bandwidth and ac-

cess [WS01].

Adjacent primary rays operate on almost the same data

c© The Eurographics Association 2008.

http://www.eg.org
http://diglib.eg.org


during traversal, intersection and shading. The same is true

to a somewhat lesser degree for secondary rays, as shadow

rays and re¤ection rays. This property is known as spatial

coherence. A recent approach to exploit spatial coherence in

order to achieve better performance is by grouping related

coherent rays into groups of rays and so operate in traversal,

intersection and sampling in parallel.

Adding the temporal dimension the spatial coherence can

be extended de£ning temporal coherence [CCD90]. It can

be exploited to reduce the amount of calculations needed for

every new frame while rendering a sequence of frames (e.g.

animation). Indeed, it is a common place that two successive

frames are similar and large part of calculation can be re-

used.

Formally, let p be the pixel of generic coordinates (x,y)
in frame fi and let p′ be the pixel with the same coordinates

(x,y) (i.e. the same pixel) in frame fi+1. Let r be the ray

through p and r′ the ray through pixel p′. The idea of the

temporal coherence is based upon a simple consideration:

the ray r and the ray r′ will follow similar paths across the

scene. A common way of exploiting the temporal coherence

is the interpolation [SB88, Che97]: the amount of calcula-

tions needed to render pixel p′ is reduced re-using (i.e. inter-

polating) information calculated for pixel p.

Summarizing, several optimization techniques has been

proposed to exploit spatial and/or temporal coherence where

it is present, assuring coherent memory accesses and high

cache hit ratio. However, in some scenarios coherence prop-

erties lack to be effective (as an example, using complex

shader [CFLB06] or massive models may affect spatial co-

herence) and then, coherent ray tracing optimizations be-

come useless.

Parallel Ray Tracing. Ray tracing has been de£ned “em-

barrassingly parallel” [FWM94] because no particular ef-

fort is needed to segment the problem in tasks and there is

no strict dependency between parallel tasks. Each tasks can

be computed independently from every other task in order

to achieve a speed up. There are two different approaches

in designing a parallel ray tracer: object-based and screen-

based [CR02]. In the objects-based approach the scene is

distributed among clients. For each ray casted the clients for-

ward rays between clients. In the screen-based approach the

scene is replicated on each client and the rendering of pix-

els is assigned to different clients. The second approach is

the one investigated in this paper by a frame to frame load

partitioning schema.

Key requirements of a parallelization scheme are: min-

imize communication overheads, balance overall load dis-

tribution, consider data locality and eventually enable a dy-

namic load redistribution with minimum overheads.

As common in parallel computing, approach that reach a

good balancing between tasks may result in an higher overall

performance. In the context of coherent ray tracing, also data

locality has a notable impact in performance. Assign a task

to a processor with a “similar” cache asset results in a low

cache miss ratio.

Related Work. Speeding up parallel ray tracing for interac-

tive use on multi-processor machine has received a big im-

pulse during last years, thanks to an ef£cient implementation

designed to £t the capabilities of modern CPUs [BSP06] and

the use of commodity PC clusters [WBDS03]. In particular,

several techniques are employed to amortize communication

costs and manage load balancing.

Slusallek et al. [WBDS03] suggest task prefetching, work

stealing and non-synchronous rendering, whereas Parker et

al. suggest a distributed load balancer [DGBP05].

In [HA98] a competitive analysis of load balancing strate-

gies for tray tracing has been presented. The analysis show

that, for 640x480 resolution images, static load balancing

strategies based upon randomization result in unacceptably

high level of unbalance and poor scalability. Moreover, the

authors argue that tiling strategies may behave even worse

and that dynamic models based on diffusion methods have

generally better results than randomization. Finally, they

proposed an hybrid approach based on a diffusion method

and randomization. Unfortunately, the proposed approach

neither takes into account task coherence nor considers any

extent to dynamic models.

Palmer et al. [PTT97] present techniques to ef£ciently ex-

ploit all levels of the deep memory hierarchy of a distributed

Power Challenge Array, on which they implement a logical

address space for volume blocks with caching. They discuss

implications for the design of a parallel architecture suited

to solve this class of problems.

Recently, ray tracing had obtained signi£cant research in-

terest on graphics hardware. Purcell et al. [PU02] designed

the £rst raytracer on the GPU that utilize an uniform grid

structure. Foley et al. [FO05] designed a k-d tree accelera-

tion structure on the GPU and showed that for some scenes

this data structure yields far better performance than an uni-

form grid. Carr et al. [CA06] used a BVH data structure to

create a raytracer suited to dynamic geometry. In any case,

none of the previous GPU ray tracing outperform signi£-

cantly the performance of a comparable CPU implementa-

tion. In the future some actual limitations will be less strict

allowing to exploit new algorithms on the GPU.

Our Result. In this paper we analyze the effectiveness of

exploiting coherence in Parallel Ray Tracing. We present a

load-balancing technique, based on a Prediction Binary Tree

(PBT), which allows to exploit temporal coherence among

successive image frames. Furthermore, we also provide two

heuristics which take advantage of data-locality.

We verify the productivity of the proposed solution by run-

ning two experiments. The £rst one aims to investigate the

correctness of predictions made by using the PBT.

c© The Eurographics Association 2008.

B. Cosenza et al. / On Estimating the Effectiveness of Temporal and Spatial Coherence in Parallel Ray Tracing98



Figure 1: An example of a PBT tree: the frame on the left has been rendered with the computation times (in ms) for each tile

shown on the leaves.

Results show that such predictions are quite accurate even

considering a heavily unbalanced scene, a £ne-grained gran-

ularity and a fast moving camera. The second experiment

evaluates the two locality-aware heuristics showing only a

modest improvement.

Organization of the paper. In the next section we present

the parallelization model analyzing in details several oppos-

ing issues in design load balancing strategies. Then, in Sec-

tion 3, we introduce the PBT and describe how it can be

used to exploit temporal coherence. Section 4 describes two

locality aware heuristics which allow each worker to exploit

spatial coherence by an ef£cient usage of its CPU cache. Ex-

periment results are presented in Section 5. Finally, in Sec-

tion 6, we conclude the paper with comments and further

directions of research.

2. Load Balancing vs Data Locality

Our strategy is based on a traditional demand driven ray

tracing approach. In this approach, the primary rays are the

Principal Data Items (PDI), which, divided into tasks, are

assigned to different workers. The global scene, which con-

tains Additional Data Item (ADI) is replicated on all the

workers [CR02]. This parallelization approach is particu-

larly suited to the Master-workers paradigm.

In this paradigm, the master divides the whole job (the im-

age frame to be rendered) into a set of tasks, usually repre-

sented by rectangular areas of pixels (tiles). Then, each task

is sent to a workers which elaborates the tiles and sends back

the rendered partial image. If other tiles are not yet com-

puted, the master sends another task to the worker that has

just £nished its own. Finally, the master reassembles and vi-

sualizes the rendered image and updates the scene.

Crucial point in this paradigm is the granularity of the

subdivision of the image: in fact, the relationship between

m, number of tiles, and n, number of workers, strongly in¤u-

ences the performances.

There are two opposite, driving forces that act upon this

design choice. The £rst one is concerned about the load bal-

ancing and requires m to be larger than n. In fact, if a tile

corresponds to a zone of the scene whose pixels require large

amount of ray-object intersection checking, then, it requires

much more time with respect to a simpler tile. Then, a sim-

ple strategy to obtain a fair load balancing is to increase the

number of tiles, so that the complexity of a zone of the scene

is shared among different nodes.

On the opposite side, two considerations would ask for

smaller m. In fact, an algorithm that has large m requires

more communication costs than an algorithm with smaller

m, both in latency (more messages) and bandwidth (commu-

nication overhead for each message). Another consideration

that would require small m is spatial coherence. Since two

rays will follow similar path if they are close, in order to

make an effective usage of the local cache for each node,

it is important that the tiles are large enough, so that each

worker can exploit spatial coherence of tiles, having a good

degree of (local) cache hits.

3. Avoid unbalancing: the PBT

In this section we present how we use a Prediction Binary

Tree (PBT) to help balancing the load among the comput-

c© The Eurographics Association 2008.

B. Cosenza et al. / On Estimating the Effectiveness of Temporal and Spatial Coherence in Parallel Ray Tracing 99



ing nodes. The PBT is in charge of directing the tiling-based

load balancing strategy as follows: each frame is split into

a set of m tiles (we assume, here, for sake of simplicity that

m = n but the arguments apply to general cases) whose size

is adjusted accordingly to (an estimated) tile rendering time

that is set as the computational time as measured during the

preceding frame. The hypothesis is that the rendering time

required by a tile on two consecutive frames are quite simi-

lar because of temporal coherence.

We, now, de£ne the Prediction Binary Trees and, then, de-

scribe an on-line algorithm which, before each frame, re-

sizes unbalanced tiles in such a way to minimize the frame

computation time.

Prediction Binary Trees. A PBT T stores the current tiling

being de£ned as a rooted binary tree with exactly m leaves,

in which each (internal) node has 2 children. The root of

T , called r, represents the complete image frame. The (two)

children of an internal node v store the two halves (more

details follow on how the image is split) of the image rep-

resented by v. Consequently, each level of T represents a

partition of the image frame. Moreover, each internal node v

represents a tile which is the sum of the tile assigned to the

leaves of the tree rooted in v and consequently, the leaves

of T (henceforth L(T )) represents a partition of the image

frame. In order to maintain a good spatial coherence, the

children of an internal v node which belongs to an odd (resp.

even) level of T are obtained halving the tile in t along the

horizontal (resp. vertical) axes. Each leaf e(ℓ) also stores two

variables: e(ℓ) that is the estimate of the time for rendering

tile in ℓ and t(ℓ) that is time used by a worker to render (in

the last frame) the tile in ℓ. Figure 1 gives an example of a

PBT, with the corresponding image partition on the left.

Exploit Temporal Coherence: Updating PBT. the PBT

stores the subdivision of tiles and each leaf of T is a task

to be assigned to a worker. At the end of each frame, the

PBT receives (with the image rendered) also the information

about the time that each worker has spent on the tile. This

time is received as t(ℓ) for each leaf, and is used as estimate

by copying it into e(ℓ). By using the previous frame times as

estimate, the PBT is ef£ciently updated for the next frame.

Here we describe a provably effective and ef£cient way of

changing the PBT structure so that the next frame can be ex-

ecuted (given the temporal coherence) more ef£ciently i.e.

equally balancing the load among the processors.

We, £rst, de£ne the variance as a metric to measure the

(estimated) computational unbalance that is expected given

the tiling provided by the PBT T .

σ
2
T =

1

m
∑

ℓ∈L(T )

(e(ℓ)−µT )2,

where e(ℓ) represents the time estimated to render the tile

corresponding to the leaf ℓ of T and µT is the estimated

average computational time, that is, µT = 1
m ∑ℓ∈L(T ) e(ℓ).

Clearly, the smaller the variance σ2
T is, the better is T ’s bal-

ancing of the load to the processors.

Given a PBT T at the end of a frame, the estimated com-

putation time associated to each leaf, e(ℓ), is taken by the

computation time t(ℓ) at the frame just rendered; then, we

use a greedy algorithm that £nds the new PBT T ∗. The idea

of the algorithm PBT-Update (shown as Algorithm 1) is to

perform a sequence of simultaneous split-merge operations,

that consists in splitting a tile whose estimated load was

“high”, and merge two tiles (stored at sibling nodes) whose

(combined) estimated load is “small”.

Algorithm 1 PBT-Update

1: T ←CurrentPBT

2: for all ℓ ∈ L(T ) do

3: copy computational time t(ℓ) in estimated time e(ℓ)
4: end for

5: while true do

6: let ℓa be the leaf in T with max e(ℓ), ∀ℓ ∈ L(T )

7: let ℓb1
, ℓb2

be the two siblings such that e(ℓb1
) ·e(ℓb2

) is min-

imized over all the pairs of siblings in L(T )

8: if e(ℓa)2 ≤ 4 e(ℓb1
) · e(ℓb2

) then

9: return T

10: else

11: Split ℓa in ℓa1
and ℓa2

// Now ℓa is internal

12: e(ℓa1
) ← e(ℓa)/2

13: e(ℓa2
) ← e(ℓa)/2

14: Merge ℓb1
and ℓb2

into ℓb // Now ℓb is a leaf

15: e(ℓb) ← e(ℓb1
)+ e(ℓb2

)

16: end if

17: end while

By observing that each split-merge operation, operated by

the algorithm PBT-Update, reduces the variance of the times

on the tree and that the variance is positive, by de£nition, one

can easily prove that the PBT-Update algorithm terminates.

Our experiments also show that the PBT-Update algorithm

terminates, typically, in few steps (around 5 to 10) that is, a

small number of split-merge operation is enough to balance

the tree. Finally, it is quite easy to show that the improvement

on the variance is proportional to e(ℓa)
2
− 4e(ℓb1

)e(ℓb2
),

then at each step, the greedy algorithm PBT-Update chooses

ℓa and the siblings pair ℓb1
and ℓb2

(in lines 6-7) in order to

have the higher (local) improvement in variance.

Figure 2 shows an example of the PBT-Update algorithm,

which performs one split-merge operation, on the PBT of

Figure 1.

4. Exploiting Locality by using PBT

In this Section we investigate how to use PBT in order to

better exploit data locality: the idea is to let workers to better

use the CPU cache. The rationale behind this investigation is

that jobs carried out by two siblings workers in the PBT will

follow similar memory access patterns.

Two locality-aware heuristics. To exploit locality we de£ne

c© The Eurographics Association 2008.

B. Cosenza et al. / On Estimating the Effectiveness of Temporal and Spatial Coherence in Parallel Ray Tracing100



114

80 80

125

145 140 180

120
114

125

145 140

120

160 90 90

merge

split

Figure 2: A merge and split operation on the PBT tree of Figure 1 where the estimation times e(ℓ) drive the updates.

the concept of af£ne tiles: between frames, a tile is af£ne

to a processor if it has been assigned to that processor in

the previous frame; two tiles are af£ne if they are “near” in

the framebuffer. When a worker asks for a tile the master

node tries to assign an af£ne tile. This de£nition clari£es the

intent: to leverage af£ne tiles in order to exploit data-locality.

We implemented two heuristics in order to determinate

af£ne tiles. A £rst greedy strategy, dubbed PBT-Greedy: on

every frame, if a tile is not involved in a merge/split oper-

ation then it maintains his af£nity with the processor it has

been assigned to (during previous frame). In case of tiles in-

volved in a merge/split operation, consider a tile a splits in

tiles a1 and a2 and tiles b1 and b2 merge into tile b: a1 is

assigned to processor that handled a before; b is assigned

to processor that handled b2 before; a2 is assigned to pro-

cessor that handled b1. Just this last assignment, on the total

of new 3 assignments, will, probably, not exploit cache and

for this reason we say that this heuristic is 2/3 effective in

leveraging locality.

In the second heuristic, named PBT-Visit the af£nity is de-

£ned by a visit on the PBT, tiles are assigned following the

in order visit. One can easily check that a subset of af£ne

tiles, tiles “near” in the framebuffer, is assigned to the same

processor frame-by-frame.

5. Experiments and Results

To verify the effectiveness of exploiting temporal and spa-

tial coherence in load balancing we employed a distributed

memory system, a cluster of workstations, and test scenes

with remarkable unbalancing between tiles.

Setting of the experiments. Our hardware test platform is

a IBM BladeCenter cluster of 33 nodes (1 master node,

32 worker nodes). Each node is a Intel Pentium IV pro-

cessor running at 3.20 GHz with 1MByte cache, 1 GB of

main memory and CentOS 5 Linux as operating system with

OpenMPI version 1.1.1 for message passing. All the nodes

are interconnected with a Gigabit Ethernet network.

Temporal coherence tests. We tested our scheme on a mod-

i£ed ERW6 test scene (about thousand primitives). We cre-

ate unbalancing by changing shading properties of the ob-

jects, in particular, we used full re¤ective materials, compu-

tational intensive (used for table, chairs, ¤oor and other ob-

jects) and quite simple diffusive ones (for walls), less com-

putational intensive. The scene has four light sources (see

Figure 1 (left)). In both test scenes, we have a £xed walk-

through of the camera throughout the scene, with transla-

tions in all directions and rotations too. The image resolution

is 512x512 pixels.

In order to explore the performances of PBT in exploit-

ing temporal coherence, we checked it under different con-

ditions. First we tested two different task granularity (we re-

call that we consider m = k · n, where m is the number of

tiles and n is the number of worker): we have chosen k = 1

(one tiles for each worker) and k = 4 (four tiles, on aver-

age, for each workers). Moreover, we considered two differ-

ent camera speed (1x and 2x). In all the tests the number

of workers is n = 32. To make a comparison, we measured

the total amount of tiles which has been estimated correctly

using 85th, 90th and 95th percentile (see Table 1). As an ex-

ample row 2 (Perc. 90th) represents the percentile of estima-

c© The Eurographics Association 2008.

B. Cosenza et al. / On Estimating the Effectiveness of Temporal and Spatial Coherence in Parallel Ray Tracing 101



Figure 3: Images generated during the walk-through of the scene used for spatial coherence tests.

tions having an error up to 10%. In other words, when k = 1

and the camera speed is 1x the 93.2% of estimations have an

error smaller than 10%, while when k = 4 and the camera

speed is 2x the 79.8% of estimations have an error smaller

than 10%.

Corr. Perc. k = 1 k = 1 k = 4 k = 4

x1 x2 x1 x2

85 96.2% 95.3% 92.1% 89.7%

90 93.2% 92% 86.2% 79.8%

95 92.6% 84% 68% 55%

Table 1: Results of the predictions in 85th, 90th and 95th

percentile.

Spatial coherence tests. In this test we investigate the effec-

tiveness of data locality in exploiting the processors’ cache.

The test consider 4 different scenes with an increasing num-

ber of triangles, ranging from less than 30000 to about

950000. In Table 2 are reported the number of triangles and

the number of nodes in the Kd-tree. The difference between

scenes is an increasing number of amphitheaters (all of them

have simple diffusive shaders). Scenes are animated by a

prede£ned walk-through of the camera. The frame resolu-

tion is 512x512 pixels.

The rationale behind the test is to verify that, whenever

the size of the Kd-tree is bigger than the cache size, a drop

of the performance can be measured, due to the number of

cache misses.

Test scene Triangles Nodes in Kd-tree

1 Amphitheater 29759 251017

4 Amphitheater 119026 999237

16 Amphitheater 476098 3970097

32 Amphitheater 952130 7970097

Table 2: A simple description of the test scenes used for

spatial coherence tests. For each scene, we report the cor-

responding number of primitives and the Kd-tree’s size.

All tests shows that improvements obtained by using the

PBT (with both the locality-aware heuristics, see Section 4,

and a random assignment named PBT-Random) with respect

a static random assignment. With more details, on small

scenes (see Figure 4 (up)), the whole scene £ts into the cache

and then the assignment strategy does not matter. When the

scene become larger, so that it does not £t into the cache

(see Figure 4 (down)), the data locality also provides a mod-

est improvement of the performances of the system (around

1−5 ms) using both the locality-aware heuristics.

6. Conclusions and Future Works

In this paper we have described a load balancing technique

that is able to exploit both spatial and temporal coherence in

Parallel Ray Tracing. Our strategy divides the original ren-

dering problem in balanced subtasks and distributes them

to independent processors through a Prediction Binary Tree

(PBT).

The PBT allows to exploit temporal coherence between

successive frames. At each new frame, the PBT is updated

using a cost function which uses previous rendering time as

cost estimate. The PBT-Update performs split-merge opera-

tions to let the PBT balancing the load among the nodes and

reducing the variance of the computing times.

The PBT is also useful in leveraging data locality. Two

locality-aware heuristics have been used in tile scheduling

with the purpose of assigning af£ne tiles to the same proces-

sors, in two consecutive frames. Heuristics have had differ-

ent performance improvements.

Temporal coherence showed larger bene£ts in acceler-

ating the PRT. In the case of locality-aware heuristics we

have measured smaller improvements. In our experiments

we tried to stress the cache performances by using scenes

larger and larger in such a way that whole kd-tree would not

£t into the cache. This is not the best way to challenge cache

performances, as shown in [CFLB06]. In future tests we will

increase the unbalancing of the scene by using more compu-

tational intensive shaders.

A future work is to integrate the PBT algorithm with other

common techniques for manage load balancing. Common

c© The Eurographics Association 2008.

B. Cosenza et al. / On Estimating the Effectiveness of Temporal and Spatial Coherence in Parallel Ray Tracing102



Figure 4: Rendering time per tile. (up) test scene “1 Amphitheater”, (down) test scene “32 Amphitheater”.

techniques used in parallel computing to address load bal-

ancing are focused on task subdivision e redistribution; these

techniques can be effectively integrated with the PBT. In the

particular scenario of work stealing [BL99], we envision that

the employ of PBT can signi£cantly reduce the number of

work steals with a valuable performance impact. Another

appealing scenario of use of the PBT to support distributed

load balancing schema.

c© The Eurographics Association 2008.

B. Cosenza et al. / On Estimating the Effectiveness of Temporal and Spatial Coherence in Parallel Ray Tracing 103



References

[BL99] BLUMOFE R. D., LEISERSON C. E.: Scheduling

multithreaded computations by work stealing. In Journal

of ACM Vol. 46(5) (1999), pages 720–748.

[BSP06] BIGLER J., STEPHENS A., PARKER S.: Design

for parallel interactive ray tracing systems. In IEEE Sym-

posium on Interactive Ray Tracing (Los Alamitos, CA,

USA, 2006), IEEE Computer Society, pages 187–196.

[CA06] CARR, N. A., HOBEROCK, J., CRANE, K., AND

HART, J. C.: Fast gpu ray tracing of dynamic meshes

using geometry images. In Proceedings of Graphics In-

terface 2006, Canadian Information Processing Society.

[CCD90] CHAPMAN J., CALVERT T. W., DILL J.: Ex-

ploiting temporal coherence in ray tracing. In Proceed-

ings on Graphics interface ’90 (Toronto, Canada, 1990),

pages 196–204.

[CFLB06] CHRISTENSEN P., FONG J., LAUR D.,

BATALI D.: Ray tracing for the movie ‘cars’. In

IEEE Symposium on Interactive Ray Tracing 2006, (Sept.

2006), pages 1–6.

[Che97] CHEVRIER C.: A view interpolation technique

taking into account diffuse and specular inter-re¤ections.

In The Visual Computer, Vol. 13(7) (1997), pages 330–

341.

[CR02] CHALMERS A., REINHARD E. (Eds.): In Practi-

cal Parallel Rendering. A. K. Peters, Ltd., Natick, MA,

USA, 2002.

[DGBP05] DEMARLE D. E., GRIBBLE C. P., BOULOS

S., PARKER S. G.: Memory sharing for interactive ray

tracing on clusters. In Parallel Computing, Vol. 31(2)

(2005), pages 221–242.

[FWM94] FOX G. C., WILLIAMS R. D., MESSINA P. C.:

Parallel Computing Works! Morgan Kaufmann, May

1994.

[FO05] FOLEY, T., AND SUGERMAN, J.: Kd-tree accel-

eration structures for a gpu raytracer. In HWWS ’05: Pro-

ceedings of the ACM SIGGRAPH/EUROGRAPHICS con-

ference on Graphics hardware, ACM Press, New York,

NY, USA, 15-22.

[HA98] HEIRICH A., ARVO J.: A competitive analysis of

load balancing strategies for parallel ray tracing. In The

Journal of Supercomputing, Vol. 12(1–2) (1998), pages

57–68.

[PTT97] PALMER M. E., TAYLOR S., TOTTY B.: Ex-

ploiting Deep Parallel Memory Hierarchies for Ray Cast-

ing Volume Rendering. In IEEE Parallel Rendering Sym-

posium (1997), Painter J., Stoll G., Kwan-Liu Ma, (Eds.),

pages 15–22.

[PU02] PURCELL, T. J., BUCK, I., MARK, W. R., HAN-

RAHAN, P.: Ray tracing on programmable graphics hard-

ware. In ACM Trans. Graph. (2002), pages 703–712.

[RSH05] RESHETOV A., SOUPIKOV A., HURLEY J.:

Multi-level ray tracing algorithm. In ACM Transaction on

Graphics (TOG), Vol. 24(3) (2005), pages 1176–1185.

[SB88] SIG BADT J.: Two algorithms for taking advan-

tage of temporal coherence in ray tracing. In The Visual

Computer, Vol. 4(3) (1988), pages 123–132.

[Shi96] SHIRLEY P.: Monte Carlo Methods for Render-

ing. In ACM SIGGRAPH ’96 Course Notes CD-ROM

- Global Illumination in Architecture and Entertainment,

(1996), pages 1–26.

[Wal04] WALD I.: Realtime Ray Tracing and Interac-

tive Global Illumination. PhD thesis, Saarland University

(2004).

[WBDS03] WALD I., BENTHIN C., DIETRICH A.,

SLUSALLEK P.: Interactive Distributed Ray Tracing on

Commodity PC Clusters – State of the Art and Practi-

cal Applications. In Proceedings of EuroPar ’03, Lecture

Notes on Computer Science 2790 (2003), pages 499–508.

[Whi80] WHITTED T.: An improved illumination model

for shaded display. In Communications of the ACM, Vol.

26(6) (1980), pages 313–349.

[WS01] WALD I., SLUSALLEK P.: State of the Art in In-

teractive Ray Tracing. In Eurographics 2001 State of the

Art Reports (2001), pages 21–42.

c© The Eurographics Association 2008.

B. Cosenza et al. / On Estimating the Effectiveness of Temporal and Spatial Coherence in Parallel Ray Tracing104


